PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A holistic study on the use of blockchain technology in CPS and IoT architectures maintaining the CIA triad in data communication

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Blockchain-based cyber-physical systems (CPSs) and the blockchain Internet of things (BIoT) are two major focuses of the modern technological revolution. Currently we have security attacks like distributed denial-of-service (DDoS), address resolution protocol (ARP) spoofing attacks, various phishing and configuration threats, network congestion, etc. on the existing CPS and IoT architectures. This study conducts a complete survey on the flaws of the present centralized IoT system’s peer-to-peer (P2P) communication and the CPS architecture’s machine-to-machine (M2M) communication. Both these architectures could use the inherent consensus algorithms and cryptographic advantages of blockchain technology. To show how blockchain technology can resolve the flaws of the existing CPS and IoT architectures while maintaining confidentiality, integrity, and availability (the CIA triad), we conduct a holistic survey here on this topic and discuss the research focus in the domain of the BIoT. Then we analyse the similarities and dissimilarities of blockchain technology in IoT and CPS architectures. Finally, it is well understood that one should explore whether blockchain technology will give advantages to CPS and IoT applications through a decision support system (DSS) with a relevant mathematical model, so here we provide the DSS with such a model for this purpose.
Rocznik
Strony
403--413
Opis fizyczny
Bibliogr. 50 poz., rys.
Twórcy
  • Department of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
Bibliografia
  • [1] Aste, T., Tasca, P. and Matteo, T.D. (2017). Blockchain technologies: The foreseeable impact on society and industry, Computer 50(9): 18–28, DOI: 10.1109/MC.2017.3571064.
  • [2] Bailis, P., Narayanan, A., Miller, A. and Han, S. (2017). Research for practice: Cryptocurrencies, blockchains, and smart contracts; hardware for deep learning, Communications of the ACM 60(5): 48–51.
  • [3] Baliga, A. (2017).Understanding blockchain consensus models, https://www.persistent.com/wp-content/uploads/2017/04/WP-Understanding-Blockchain-Consensus-Models.pdf.
  • [4] Banerjee, M., Lee, J. and Choo, K.K.R. (2018). A blockchain future for Internet of things security: A position paper, Digital Communications and Networks 4(3): 149–160.
  • [5] Bano, S., Sonnino, A., Al-Bassam, M., Azouvi, S., McCorry, P., Meiklejohn, S., and Danezis, G. (2017). Consensus in the age of blockchains, arXiv: 1711.03936, https://arxiv.org/abs/1711.03936.
  • [6] Bhattacharjya, A., Zhong, X. and Li, X. (2019a). A lightweight and efficient secure hybrid RSA (SHRSA) messaging scheme with four-layered authentication stack, IEEE Access 7: 30487–30506, DOI: 10.1109/ACCESS.2019.2900300.
  • [7] Bhattacharjya, A., Zhong, X., Jing, W. and Li, X. (2019b). Security challenges and concerns of Internet of things (IoT), in S. Guo and D. Zeng (Eds), Cyber-Physical Systems: Architecture, Security and Application, Springer, Cham, pp. 153–185.
  • [8] Bhattacharjya, A., Zhong, X., Jing,W. and Li, X. (2019c).Secure IoT structural design for smart cities, in D.B. Rawat and K.Z. Ghafoor (Eds), Smart Cities Cybersecurity and Privacy, Elsevier, Amsterdam, pp. 187–201.
  • [9] Bhattacharjya, A., Zhong, X., Jing, W. and Li, X. (2019d). Present scenarios of IoT projects with security aspects focused, in M. Farsi et al. (Eds), Digital Twin Technologies and Smart Cities: Internet of Things (Technology, Communications and Computing), Springer, Cham pp. 95–122.
  • [10] Bhattacharjya, A., Zhong, X., Jing, W. and Li, X. (2019e). CoAP—Application layer connection-less lightweight protocol for the Internet of things (IoT) and CoAP-IPSEC security with DTLS supporting CoAP, in M. Farsi et al. (Eds), Digital Twin Technologies and Smart Cities: Internet of Things (Technology, Communications and Computing), Springer, Cham, pp. 151–175.
  • [11] Bhattacharjya, A., Zhong, X., Jing, W. and Li, X. (2019f). A secure hybrid RSA (SHRSA)-based lightweight and efficient personal messaging communication protocol, in M. Farsi et al. (Eds), Digital Twin Technologies and Smart Cities: Internet of Things (Technology, Communications and Computing), Springer, Cham, pp. 191–212.
  • [12] Box, G.E.P. (1979).Robustness in the strategy of scientific model building, in R.L. Launer and G.N. Wilkinson (Eds), Robust Statistics, Academic Press, Cambridge, pp. 201–236, DOI: 10.1016/B978-0-12-438150-6.50018-2.
  • [13] Cachin, C. and Vukolic, M. (2017). Blockchains consensus protocols in the wild, arXiv: 1707.01873, https://arxiv.org/abs/1707.01873.
  • [14] Chowdhury, M.J.M., Ferdous, M.S., Biswas, K.N., Chowdhury, N., Kayes, A.S.M., Alazab, M. and Watters, P. (2019). A comparative analysis of distributed ledger technology platforms, IEEE Access 7: 167930–167943, DOI: 10.1109/ACCESS.2019.2953729.
  • [15] Fromknecht, C., Velicanu, D. and Yakoubov, S (2014).CertCoin: A Namecoin based decentralized authentication system, 6.857 Unpublished Class Project, MIT, Cambridge, http://courses.csail.mit.edu/6.857/2014/files/19-fromknecht-velicann-yakoubov-certcoin.pdf.
  • [16] Hyperledger (2017). IBM blockchain based on Hyperledger Fabric from the Linux Foundation, https://www.ibm.com/Blockchain/hyperledger.
  • [17] IOTA (2017a). IOTA Developer Hub, https://www.iota.org/get-started/for-developers.
  • [18] IOTA (2017b). IOTA: A cryptocurrency for the Internet-of-things, https://iota.org/.
  • [19] Joichi, I. (2016). The Fintech Bubble, Joi Ito’s Web, DOI: 10.31859/20160614.1805.
  • [20] Lee, J., Azamfar, M. and Singh, J. (2019). A blockchain enabled cyber-physical system architecture for Industry 4.0 manufacturing systems, Manufacturing Letters 20: 34–39.
  • [21] Lee, J., Bagheri, B. and Kao, H.A. (2015). A cyber-physical systems architecture for Industry 4.0-based manufacturing systems, Manufacturing Letters 3: 18–23, DOI: 10.1109/ACCESS.2019.2900300.
  • [22] Lee, J., Kao, H.A. and Yang, S. (2014). Service innovation and smart analytics for Industry 4.0 and big data environment, Procedia CIRP 16: 3–8.
  • [23] Li, Z., Barenji, A.V. and Huang, G.Q. (2018). Toward a blockchain cloud manufacturing system as a peer to peer distributed network platform, Robotics and Computer-Integrated Manufacturing 54: 133–144.
  • [24] Marc, P. (2016). Blockchain technology: Principles and applications, in F.X. Olleros and M. Zhegu (Eds), Research Handbook on Digital Transformations, Edward Elgar Publishing, Cheltenham, pp. 225–253, DOI: 10.4337/9781784717766.00019.
  • [25] Michael, C., Nachiappan, Pattanayak, P., Verma, S., Kalyanaraman, V. (2016). Blockchain technology: Beyond bitcoin, Applied Innovation 2: 6–10.
  • [26] Monostori, L., K´ad´ar, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., Sauer, O., Schuh, G., Sihn, W. and Ueda, K. (2016).Cyber-physical systems in manufacturing, International Academy for Production Engineering CIRP Annals 65(2): 621–641.
  • [27] Mukhopadhyay, U., Skjellum, A., Hambolu, O., Oakley, J., Yu, L. and Brooks, R. (2016).A brief survey of cryptocurrency systems, 14th Annual Conference on Privacy, Security and Trust (PST), Auckland, New Zealand, pp. 745–752, DOI: 10.1109/PST.2016.7906988.
  • [28] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system, https://bitcoin.org/bitcoin.pdf.
  • [29] Namecoin (2018). Namecoin: An experimental open-source technology, https://namecoin.org/.
  • [30] Palma, L.M., Vigil, M.A.G., Pereira, F.L. and Martina, J.E. (2019). Blockchain and smart contracts for higher education registry in Brazil, International Journal of Network Management 29(3): 1–21, DOI: 10.1002/nem.2061.
  • [31] Prime (2017). Prime: A Byzantine fault-tolerant replication engine, Johns Hopkins University, Baltimore, www.dsn.jhu.edu/byzrep/prime.html.
  • [32] Proof of Existence (2018). Proof of Existence: Written forever, https://proofofexistence.com.
  • [33] Pustišek, M. and Kos, A. (2018). Approaches to front-end IoT application development for the Ethereum blockchain, Procedia Computer Science 129: 410–419.
  • [34] Robert, S. and Alan,W. (1978).The Principles of Practical Cost-Benefit Analysis, Oxford University Press, Oxford.
  • [35] Sankar, L.S., Sindhu, M. and Sethumadhavan, M. (2017).Survey of consensus protocols on blockchain applications, 4th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, pp. 1–5, DOI: 10.1109/ICACCS.2017.8014672.
  • [36] Sethi, A.K. and Sethi, S.P. (1990). Flexibility in manufacturing: A survey, International Journal of Flexible Manufacturing Systems 2: 289–328, DOI: 10.1007/BF00186471.
  • [37] Sigrid, S. and Samman, G. (2016). Consensus: Immutable agreement for the Internet of value, KPMG, Amstelveen, https://assets.kpmg/content/dam/kpmg/pdf/2016/06/kpmg-blockchain-consensus-mechanism.pdf.
  • [38] Swan, M. (2015). Blockchain: Blueprint for a New Economy, O’Reilly Inc Media, Newton.
  • [39] Tangle (2018). Version 1.4.3, https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf.
  • [40] Trón, V. and Lange, F. (2015). Ethereum specification, https://github.com/ethereum/go-ethereum/wiki/Ethereum-Specification.
  • [41] Wiśniewski, R., Bazydło, G., Szcześniak, P. and Wojnakowski, M. (2019). Petri net-based specification of cyber-physical systems oriented to control direct matrix converters with space vector modulation, IEEE Access 7: 23407–23420, DOI: 10.1109/ACCESS.2019.2899316.
  • [42] Wiśniewski, R., Grobelna, I. and Karatkevich, A. (2020). Determinism in cyber-physical systems specified by interpreted Petri nets, Sensors 20(19): 5565.
  • [43] Underwood, S. (2016).Blockchain beyond bitcoin, Communications of the ACM 59(11): 15–17.
  • [44] Vora, J., Nayyar, A., Tanwar, S., Tyagi, S., Kumar, N., Obaidat, M.S. and Rodrigues, J.J.P.C. (2018). BHEEM: A blockchain-based framework for securing electronic health records, 2018 IEEE Globecom Workshops, Abu Dhabi, UAE, pp. 1–6, DOI: 10.1109/GLOCOMW.2018.8644088.
  • [45] Wang, W., Hoang, D.T., Hu, P., Xiong, Z., Niyato, D., Wang, P., Wen, Y. and Kim, D.I. (2019). A survey on consensus mechanisms and mining strategy management in blockchain networks, IEEE Access 7: 22328-22370.
  • [46] Xiao, D. (2016). The four layers of the blockchain, https://medium.com/@coriacetic/the-four-layers-of-the-Blockchain-dc1376efa10f.
  • [47] Xu, X. (2012). From cloud computing to cloud manufacturing, Robotics and Computer-Integrated Manufacturing 28(1): 75–86.
  • [48] Yang, L. (2017). Industry 4.0: A survey on technologies, applications and open research issues, Journal of Industrial Information Integration 6: 1–10, DOI: 10.1016/j.jii.2017.04.005.
  • [49] Yu, T., Lin, Z. and Tang, Q. (2018). Blockchain: The introduction and its application in financial accounting, Journal of Corporate Accounting & Finance 29(4): 37–47.
  • [50] Zissis, D. and Lekkas, D. (2012). Addressing cloud computing security issues, Future Generation Computer Systems 28(3): 583–592.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6eb071d5-d7a2-4818-899c-788c87d51601
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.