Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the results of the bearing capacity of reinforced concrete beams with and without damages of internal reinforcement. One of the main elements of the production of the reinforced concrete industry is beams. The analysis of the experimental tests showed that the bearing capacity of reinforced concrete beams with damaged tensile main reinforcement decreases according to control undamaged samples due to the reduction of the reinforcement cross-section. However, the bearing capacity of reinforced concrete beams with tensile main reinforcement Ø20А500C, damaged to the cross-section area equal the rebar Ø16mm is more on 3.7… 24.0% than the bearing capacity of reinforced concrete beams with undamaged Ø16mm rebar. This is due to the non-uniform material properties of used thermally strengthened reinforcement A500C. When during testing the tensile main reinforcement is damaged by drilling a hole, the most damages occur in the core with lower physical and mechanical characteristics. In contrast, the outer thermally strengthened layer with bigger physical and mechanical characteristics is damaged to a lesser extent. The analysis of the obtained results shows that during design of reinforced concrete beams with damaged, it is necessary to consider using thermally strengthened non-uniform steel A500C as tensile main reinforcement.
Czasopismo
Rocznik
Tom
Strony
298--303
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
- Lviv Polytechnic National University, Department of Building Constructions and Bridges, 12 st. S. Bandera, Lviv, 79013, Ukraine
autor
- Czestochowa University of Technology, Faculty of Civil Engineering, 69 st. Dabrowskiego, 42-201 Czestochowa, Poland
autor
- Lviv Polytechnic National University, Department of Building Constructions and Bridges, 12 st. S. Bandera, Lviv, 79013, Ukraine
autor
- Lviv Polytechnic National University, Department of Building Constructions and Bridges, 12 st. S. Bandera, Lviv, 79013, Ukraine
Bibliografia
- 1. Azizov, T., Kochkarev, D., Galinska, T., Melnyk, O., 2020. Calculation of Composite Bending Elements. Lecture Notes in Civil Engineering, 181, 25-33.DOI:10.1007/978-3-030-85043-2.3.
- 2. Blikharskyy, Y., Selejdak, J., 2021. Influence of the percentage of reinforcement damage on the bearing capacity of RC beams, Construction of Optimized Energy Potential (CoOEP), 10(1), 145-150, DOI:10.17512/bozpe.2021.1.15
- 3. Blikharskyy, Y., Selejdak, J., Kopiika, N., 2021. Specifics of corrosion processes in thermally strengthened rebar. Case Studies in Construction Materials, 15, e00646. DOI:10.1016/j.cscm.2021.e00646
- 4. Blikharskyy, Z., Khmil, R., Vegera, P., 2017. Shear strength of reinforced concrete beams strengthened by PBO fiber mesh under loading. MATEC web of conferences,116, 02006. DOI:10.1051/matec-conf/201711602006.
- 5. Blikharskyy, Z., Vegera, P., Vashkevych, R., Shnal, T., 2018. Fracture toughness of RC beams on the shear, strengthening by FRCM system. MATEC web of conferences, 183, 02009. DOI: 10.1051/matec-conf/201818302009.
- 6. Dorofeyev V., Pushkar N., Zinchenko H., 2021. The influence of concrete structure on the destruction of reinforced concrete bended elements. Lecture Notes in Civil Engineering, 100, pp. 103-111. DOI:10.1007/978-3-030-57340-9.13.
- 7. Formisano, A., Massimilla, A., Di Lorenzo, G., Landolfo, R., 2020. Seismic retrofit of gravity load designed RC buildings using external steel concentric bracing systems. Engineering Failure Analysis, 111, 104485. DOI:10.1016/j.engfailanal.2020.104485
- 8. Jończyk, D., 2020. Deflection estimation of glued laminated timber beams reinforced with CFRP fiber composites, Construction of Optimized Energy Potential (CoOEP), 9(2), 127-134, DOI:10.17512/bozpe.2020.2.15
- 9. Karpiuk, V., Somina, Y., Karpiuk, F., Karpiuk, I., 2021. Peculiar aspects of cracking in prestressed reinforced concrete T-beams. Acta Polytechnica, 61(5), 633-643. DOI:10.14311/AP.2021.61.0633.
- 10. Karpyuk, V. M., Kostyuk, A. I., Semina, Y. A., 2018. General case of nonlinear deformation-strength model of reinforced concrete structures. Strength of Materials, 50(3), 453-464. DOI:10.1007/s11223-018-9990-9.
- 11. Khmil, R. Y., Tytarenko, R. Y., Blikharskyy, Y. Z., Vegera, P. I., 2021a. Improvement of the method of probability evaluation of the failure-free operation of reinforced concrete beams strengthened under load. IOP Conference Series: Materials Science and Engineering, Vol. 1021(1), 012014. DOI:10.1088/1757-899X/1021/1/012014.
- 12. Khmil, R., Tytarenko, R., Blikharskyy, Y., Vegera, P., 2021b. The Probabilistic Calculation Model of RC Beams, Strengthened by RC Jacket. Lecture Notes in Civil Engineering, 100, 182-191 DOI:10.1007/978-3-030-57340-9.23.
- 13. Kopiika, N., Vegera, P., Vashkevych, R., Blikharskyy, Z., 2021. Stress-strain state of damaged reinforced concrete bended elements at operational load level. Production Engineering Archives, 27(4), 242-247. DOI:10.30657/pea.2021.27.32.
- 14. Kos, Z., Klymenko, Y., Karpiuk, I., Grynyova, I., 2022a. Bearing Capacity near Support Areas of Continuous Reinforced Concrete Beams and High Grillages. Applied Sciences, 12(2), 685. DOI:10.3390/app12020685.
- 15. Kos, Ž., Kroviakov, S., Kryzhanovskyi, V., Grynyova, I., 2022b. Research of Strength, Frost Resistance, Abrasion Resistance and Shrinkage of Steel Fiber Concrete for Rigid Highways and Airfields Pavement Repair. Applied Sciences, 12(3), 1174. DOI: 10.3390/app12031174
- 16. Koteš, P., Vavruš, M., Raczkiewicz, W., 2022. Innovative strengthening of RC columns using a layer of a fibre reinforced concrete. Acta Polytechnica CTU Proceedings, 33, 309-315. DOI: 10.14311/APP.2022.33.0309.
- 17. Kovalchuk, B., Blikharskyy, Y., Selejdak, J., Blikharskyy, Z., 2020. Strength of Reinforced Concrete Beams Strengthened Under Loading with Additional Reinforcement with Different Levels of its Pre-tension. Lecture Notes in Civil Engineering, 100, 227-236. DOI: 10.1007/978-3-030-57340-9.28.
- 18. Krainskyi, P., Vegera, P., Khmil, R., Blikharskyy, Z., 2019. Theoretical calculation method for crack resistance of jacketed RC columns. IOP Conference Series: Materials Science and Engineering, 708 (1), 012059. DOI: 10.1088/1757-899X/708/1/012059.
- 19. Krizma, M., Bolha, L., Moravcik, M., Holubek, M., 2017. Influence of Contact of Damaged Reinforced Concrete Beam and Strengthening Slab for Deformation and Resistance of Reinforced Element in the Long-Term Loading. Key Engineering Materials, 738, pp. 164-174). DOI 10.4028/www.scientific.net/KEM.738.164
- 20. Lobodanov, M., Vegera, P., Khmil, R., Blikharskyy, Z., 2021. Influence of damages in the compressed zone on bearing capacity of reinforced concrete beams. Lecture Notes in Civil Engineering, 100, 260-267. DOI: 10.1007/978-3-030-57340-9.32.
- 21. Lobodanov, М., Vegera, P., Blikharskyy, Z., 2019. Influence analysis of the main types of defects and damages on bearing capacity in reinforced concrete elements and their research methods. Production Engineering Archives, 22, 24-29. DOI: 10.30657/pea.2019.22.05.
- 22. Malíková, L., Miarka, P., Šimonová, H., Kucharczyková, B., 2020. Deflection of an eccentric crack under mixed-mode conditions in an SCB specimen. Construction of Optimized Energy Potential (CoOEP), 9(2), 79-87, DOI: 10.17512/bozpe.2020.2.09
- 23. Nimnim, H. T., Al-Bahadli, H. A., 2018. Structural behavior of slender high-strength RC columns strengthened by steel angles. Practice Periodical on Structural Design and Construction, 23(4), 04018026. DOI 10.1061/(ASCE)SC.1943-5576.0000393
- 24. Ostash, O. P., Chepil, R. V., Vira, V. V., 2011. Fatigue crack initiation and propagation at different stress ratio values of uniaxial pulsating loading. Fatigue & Fracture of Engineering Materials & Structures, 34(6), 430-437. DOI: 10.1111/j.1460-2695.2010.01536.x.
- 25. Panchenko, S., Fomin, O., Vatulia, G., Ustenko, O., Lovska, A., 2021. Deter-mining the load on the long-based structure of the platform car with elastic elements in longitudinal beams. Eastern-European Journal of Enterprise Technologies, 1(7), 109. DOI: 10.15587/1729-4061.2021.224638.
- 26. Quercia, G., Lazaro, A., Geus, J. W., Brouwers, H. J. H., 2013. Characterization of morphology and texture of several amorphous nanosilica particles used in concrete. Cement and Concrete Composites, 44, pp 77-92. DOI 10.1016/j.cemconcomp.2013.05.006.
- 27. Sancin, L., Bedon, C., Amadio, C., 2021. Novel Design Proposal for the Seismic Retrofit of Existing Buildings with Hybrid Steel Exoskeletons and Base Sliding Devices. The Open Civil Engineering Journal, 15(1), pp 74-90. DOI 10.2174/1874149502115010074
- 28. Selejdak, J., Blikharskyy, Y., Khmil, R., Blikharskyy, Z., 2021. Crack Resistance RC Columns Strengthened by CFRP System. Key Engineering Materials, 878, 127-133. DOI: 10.4028/www.scientific.net/KEM.878.127.
- 29. Ulewicz, R., Czerwińska, K., Pacana, A., 2023. A Rank Model of Casting Non-Conformity Detection Methods in the Context of Industry 4.0. Materials, 16(2), 723. DOI 10.3390/ma16020723
- 30. Vavruš, M., Koteš, P., Bahleda, F., Jošt, J., 2021. Analysis of shear behavior between old concrete and fiber concrete. Pollack Periodica, 16(1), 77-82. DOI: 10.1556/606.2020.00130.
- 31. Vegera, P., Vashkevych, R., Blikharskyy, Y., Khmil, R., 2021. Development methodology of determinating residual carrying capacity of reinforced concrete beams with damages tensile reinforcement which occurred during loading. Eastern-European Journal of Enterprise Technologies, 4(7), 112. DOI:10.15587/1729-4061.2021.237954.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6eacc563-5489-43ec-b808-c1e1ee5b421d