PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of lithology-controlled hydraulics on pothole evolution

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study showed the influence of lithology-controlled hydraulics on pothole evolution. For this study, using tools of geometry, mathematics, and statistics, the morphology (depth and diameter of aperture) of a sample of 135 potholes has been analyzed from Ghagra waterfall of Tarafeni River, Belpahari, West Bengal, India. It was found that the depths of potholes are proportional to their diameter (h = 0.97D0.97). Equal percentile distribution of depth and average diameter indicate the consistent rate of evolution of diameter along with depth. Out of total potholes, only 1.5% are circular and 41.48% are near circular while ~57% of potholes are either oval or elongated. Variability in diameter (CV=0.79) of potholes is lesser than variability in the depth (CV=1.12). The orientation of joints significantly determines the orientation of the major axis of potholes’ diameter. Flow duration and distance from the active channel have a role in determining the size of potholes. Potholes are very common in dyke-controlled hydraulics environments. Initial seminal depression is essential for the origin of potholes. The evolution of potholes passes through sequential phases of distinct characteristics of aperture diameter/depth ratio, rates of deepening and widening, and coalescence. This study will widen the avenue for further research on the model of pothole formation and will enable replicating this evolutionary model in like situation.
Czasopismo
Rocznik
Strony
437--448
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
  • Krishnagar Government College, Nadia 741101, India
Bibliografia
  • 1. Abbott AT, Pottratz SW (1969) Marine pothole erosion, Oahu, Hawaii. Pac Sci 23:276–290
  • 2. Alexander GN (1972) Effect of catchment area on flood magnitude. J Hydrol 16(3):225–240
  • 3. Alexander HS (1932) Pothole erosion. J Geol 40(4):305–337
  • 4. Allen JRL (1982) Sedimentary structures: their character and physical basis, vol 2. Elsevier, Amsterdam. Developments in sedimentology. vol. 30B
  • 5. Ängeby O (1951) Pothole erosion in recent water-falls. Lund Stud Geogr 2:1–34
  • 6. Bizzi S, Lerner DN (2015) The use of stream power as an indicator of channel sensitivity to erosion and deposition processes: SP as an indicator of erosion and deposition. River Res Appl 31(1):16–27. https://doi.org/10.1002/rra.2717
  • 7. Brookes A (1987) The distribution and management of channelized streams in Denmark. Regul Rivers Res Manag 1(1):3–16. https://doi.org/10.1002/rrr.3450010103.ISSN1099-1646
  • 8. Charlton R (2008) Fundamentals of fluvial geomorphology. Routledge
  • 9. Chow VT (1962) Hydrologic determination of waterway areas for the design of drainage structures in small drainage basins. Univ Illinois Eng Exp Station Bull 462:104
  • 10. Das BC (2018) Development of streambed potholes and the role of grinding stones. J Environ Geogr 11(1–2):9–16. https://doi.org/10.2478/jengeo-2018-0002
  • 11. Das BC (2019) Control of substrates on pothole geometry. Curr Sci 117(2):275. https://doi.org/10.18520/cs/v117/i2/275-281
  • 12. Das BC (2021) Morphometry of plunge pools and retreat mechanism of waterfall. Environ Earth Sci 80(2):43. https://doi.org/10.1007/s12665-020-09301-y
  • 13. Dickens CH (1865) Flood discharge of rivers. Prof Pap Indian Eng 2:133
  • 14. Diffendal JF (1982) Gully, scour hole and pothole development at the base of the Gering formation (Miocene?), Southeastern Banner County, Nebraska: contributions to geology, vol 21. University of Wyoming, pp 1–6
  • 15. Gjessing J (1967) Potholes in connection with plastic scouring forms. Geogr Ann Ser A 49:178–187
  • 16. Goode JR, Wohl EE (2010) Substrate controls on the longitudinal profile of bedrock channels: implications for reach-scale roughness. J Geophys Res 115:F03018. https://doi.org/10.1029/2008JF001188
  • 17. GSI (2001) District resource map, Bankura, West Bengal. Geological Survey of India, Kolkata, Govt. Of India
  • 18. GSI (2006) District resource map, East Singhbhum, Jharkhand. Geological Survey of India, Kolkata, Govt. Of India
  • 19. GSI (2007) District resource map, Medinipur, West Bengal. Geological Survey of India, Kolkata, Govt. Of India
  • 20. Hancock GS, Anderson RS, Whipple KX (1998) Beyond power: bedrock river process and form. In: Tinkler KJ, Wohl EE (eds) Rivers over rock: fluvial processes in bedrock channels. American Geophysical Union Monograph, vol 107. American Geophysical Union, Washington, DC, USA, pp. 35–60
  • 21. Hencher S, Knipe R (2007). Development of rock Joints with time and consequences for engineering. Paper presented at the 11th ISRM congress, Lisbon, Portugal, July 2007. Paper number: ISRM-11CONGRESS-2007-049
  • 22. Islam A, Deb Barman S (2020) Drainage basin morphometry and evaluating its role on flood-inducing capacity of tributary basins of Mayurakshi river, Indai. SN Appl Sci 2(6):1–23
  • 23. Jennings JN (1983) Swirlholes and related bedrock river channel forms. Aust Geogr 15:411–414
  • 24. Johnson JP, Whipple KX (2007) Feedbacks between erosion and sediment transport in experimental bedrock channels. Earth Surf Process Landf 32:1048–1062
  • 25. Kennedy RJ, Watt WE (1967) The relationship between lag time and the physical characteristics of drainage basins in Southern Ontario. Int Assoc Sci Hydrol 85:867–874
  • 26. Kirpich ZP (1940) Time of concentration of small agricultural watersheds. Civil Eng 10(6):362
  • 27. Kor PSG, Cowell DW (1998) Evidence for catastrophic subglacial meltwater sheetflood events on the bruce peninsula, Ontario. Can J Earth Sci 35:1180–1202
  • 28. Knighton D (1998) Fluvial forms and processes: a new perspective. Hodder Education, London, P 106. ISBN: 9780340663134
  • 29. Kunert M, Coniglio M (2002) Origin of vertical shafts in bedrock along the Eramosa river valley near Guelph Southern Ontario. Can J Earth Sci 39:43–52
  • 30. Lachassagne P, Wyns R, Dewandel B (2011) The fracture permeability of hard rock aquifers is due neither to tectonics, nor to unloading, but to weathering processes. Terra Nova 23:145–161. https://doi.org/10.1111/j.1365-3121.2011.00998.x
  • 31. Ji S, Li L, Zeng W (2018) The relationship between diameter and depth of potholes eroded by running water. J Rock Mech Geotech Eng 10(5):818–831
  • 32. Lorenc MW, Alonso JS (1980) Remarks on the pothole erosion at the Tormes River (Salamanca Province, Spain). Acta Geol Hisp 91–93
  • 33. Lorenc MW, Barco PM, Saavedra J (1994) The evolution of potholes in granite bedrock, W Spain. CATENA 22(4):265–274. https://doi.org/10.1016/0341-8162(94)90037-X
  • 34. Lugt HJ (1983) Vortex flow in nature and technology. Wiley And Sons, New York, p 297
  • 35. Morgan AV (1970a) Late Weichselian potholes near Wolverhampton. England J Glaciol 9:125–133
  • 36. Natural Environment Research Council (1975) Flood studies report. Hydrological studies, vol I. NERC, London
  • 37. Orr HG, Large ARG, Newson MD, Walsh CL (2008) A predictive typology for characterising hydromorphology. Geomorphology 100(1–2):32–40. https://doi.org/10.1016/j.geomorph.2007.10.022
  • 38. Ortega JA, Gómez-Heras M, Perez-López R, Wohl E (2014) Multiscale structural and lithologic controls in the development of stream potholes on granite bedrock rivers. Geomorphology 204:588–598. https://doi.org/10.1016/j.geomorph.2013.09.005
  • 39. Ortega-Becerril J, Gomez-Heras M, Fort R, Wohl E (2017) How does anisotropy in bedrock river granitic outcrops influence pothole genesis and development? Earth Surf Proc Land 42(6):956–968
  • 40. Pelletier JD, Sweeney KE, Roering JJ, Finnegan NJ (2015) Controls on the geometry of potholes in bedrock channels. Geophys Res Lett. https://doi.org/10.1002/2014GL062900
  • 41. Richardson K, Carling PA (2005) A typology of sculpted forms in open bedrock channels. The Geological Society of America, Special paper; 392. ISBN 0-8137-2392-2
  • 42. Sengupta S, Kale VS (2011) Evaluation of the role of rock properties in the development of potholes: a case study of the Indrayani Knickpoint Maharashtra. J Earth Syst Sci 120(1):157–165
  • 43. Shit PK, Nandi AS, Bhunia GS (2015) Soil erosion risk mapping using RUSLE model on Jhargram sub-division at West Bengal in India. Model Earth Syst Environ 1(3):1–12
  • 44. Springer GS, Tooth S, Wohl EE (2005) Dynamics of pothole growth as defined by field data and geometrical description. J Geophys Res Earth Surf. https://doi.org/10.1029/2005JF000321
  • 45. Springer GS, Tooth S, Wohl EE (2006) Theoretical modeling of stream potholes based upon empirical observations from the Orange river, Republic of South Africa. Geomorphology 82:160–176
  • 46. Whipple KX, Hancock GS, Anderson RS (2000a) River incision into bedrock: mechanics and relative efficacy of plucking, abrasion and cavitation. Geol Soc Am Bull 112:490–503
  • 47. Whipple KX, Snyder NP, Dollenmayer K (2000b) Rates and processes of bedrock incision by the Upper Ukak River since the 1912 Novarupta ash flow in the valley of ten thousand smokes. Alaska Geology 28:835–838
  • 48. Wohl EE, Ikeda H (1997) Experimental simulation of channel incision into a coqhesive substrate at varying gradients. Geology 25:295–298
  • 49. Zen EA, Prestegaard KL (1994) Possible hydraulic significance of two kinds of potholes: examples from the paleo-Potomac river. Geology 22(1):47–50
  • 50. Zingg TJ (1935) Beitrag Zur Schotteraaalyse: Schweiz. Min Pet Mitt 15:39–140
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6eab5ff9-0b0a-4b97-aafa-a306907b799f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.