PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of reagents concentration on the efficiency of obtaining high-purity magnesium hydroxide

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work presents the impact of reagents concentration and the drying process on the efficiency of obtaining magnesium hydroxide and its specific surface area. Magnesium sulphate(VI) within the concentration range of 0.7–2.0 mol/dm3  was used in the research as magnesium feedstock and sodium hydroxide was used as a precipitating agent within the same concentration range. The process of obtaining magnesium hydroxide was carried out with a 25% excess of the precipitating agent in relation to the reaction stoichiometry. The obtained suspension was separated by way of multi-stage sedimentation with the use of acetone and freezing samples. Depending on the concentration of reagents the efficiency of obtaining magnesium hydroxide fell within the range of 88–99%, whereas the specific surface area – within 115–609 m2 /g, while the high purity of samples above 99% of magnesium hydroxide was maintained.
Rocznik
Strony
73--77
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • Tadeusz Kosciuszko Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Kraków, Poland
  • Polish Academy of Sciences, Mineral and Energy Economy Research Institute, Wybickiego 7, 31-261 Kraków, Poland
  • Tadeusz Kosciuszko Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Kraków, Poland
  • Tadeusz Kosciuszko Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Kraków, Poland
Bibliografia
  • 1. Rothon, R.N. & Hornsby, P.R. (1996). Flame retardant effects of magnesium hydroxide, Polymer Degrad. Stab. 54, 383–385. DOI: 10.1016/S0141-3910(96)00067-5.
  • 2. Yi, D., Guangtao, Z., Hao, W., Bin, H., Liangbin, W. & Yitai, Q. (2001). Nanoscale magnesium hydroxide and magnesium oxide powders: control over size, shape, and structure via hydrothermal synthesis, Chem. of Mater. 13, 435–440. DOI: 10.1021/cm000607e.
  • 3. Guolin, S., Sude, M., Guoyi, T., Zhansong, Y. & Xiaowei, W. (2010). Preparation and characterization of flame retardant form-stable phase change materials composed by EPDM, paraffin and nano magnesium hydroxide, Energy 35, 2179–2183. DOI: 10.1016/j.energy.2010.02.002.
  • 4. Xiaolang, C., Jie Y., Shaoyun, G., Shengjun, L., Zhu, L. & Min, H. (2009). Surface modification of magnesium hydroxide and its application in flame retardant polypropylene composites, J. Mater. Sci. 44, 1324–1332. DOI: 10.1021/ja073506r.
  • 5. Weina, Z., Xianggao, L., Zhongqiang, S., Shirong, W. & Yin, X. (2019). Surface modification of magnesium hydroxide by wet process and effect on the thermal stability of silicone rubber, Appl. Surf. Sci. 465, 740–746.
  • 6. Hippi, U., Mattila, J., Korhonen, M. & Seppälä, J. (2003). Compatibilization of polyethylene/aluminum hydroxide (PE/ATH) and polyethylene/magnesium hydroxide (PE/MH) composites with functionalized polyethylenes, Polymer 44, 1193–1201. DOI: 10.1016/S0032-3861(02)00856-X.
  • 7. Wenjun, J., Xiao, H., Qiaofeng, H., Xujie, Y., Lude, L. & Xin, W. (2009). Preparation of lamellar magnesium hydroxide nanoparticles via precipitation method, Powder Technol. 191, 227–230. DOI: 10.1016/j.powtec.2008.10.023.
  • 8. Pilarska, A., Klapiszewski, Ł. & Jesionowski, T. (2017). Recent development in the synthesis, modification and application of Mg(OH)2 and MgO: A review, Powder Technol. 319, 373–407.
  • 9. Lv, J., Qiu, L. & Qu, B. (2001). Controlled growth of three morphological structures of magnesium hydroxide nanoparticles by wet precipitation method, J. Crystal Growth 267, 676–684. DOI: 10.1016/j.jcrysgro.2004.04.034.
  • 10. Pilarska, A., Linda, I., Wysokowski, M., Paukszta, D. & Jesionowski, T. (2012). Synthesis of Mg(OH)2 from magnesium salts and NH4OH by direct functionalisation with poly(ethylene glycols), Phys. Probl. Min.l Process. 48(2), 631–643.
  • 11. Jiang, W., Hua, X., Han, Q., Yang, X., Lu, L. & Wang, X. (2009). Preparation of lamellar magnesium hydroxide nanoparticles via precipitation method, Powder Technol. 191, 227–230. DOI: 10.1016/j.powtec.2008.10.023
  • 12. Jarosiński, A. & Radomski, P. (2011). Comparison of selected methods of industrial magnesium sulphate purification from iron compounds, Czasopismo Techniczne, 1-Ch/2011, 8(108), 71–77.
  • 13. Henrist, C., Mathieu, J.P., Vogels, C., Rulmont, A. & Cloots, R. (2003). Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution, J. Crystal Growth 249 (1–2), 321–330.
  • 14. Jianping, L., Longzhen, Q. & Baojun, Q. (2004). Controlled growth of three morphological structures of magnesium hydroxide nanoparticles by wet precipitation method, J. Crystal Growth 267, 676–684. DOI: 10.1016/j.jcrysgro.2004.04.034.
  • 15. Radomski, P., Jarosiński, A. & Wzorek, Z. (2015). Polish Patent No. PL P.413130.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ea7531f-3fab-4bec-9170-11a5569c93f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.