PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cutting Mechanics when Turning Powder Metallurgy Produced Nickel-Cobalt Base Alloy with a Cubic Boron Nitride Insert

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For the critical aero-engine parts it’s important to understand influence of cutting tools, cutting parameters, tool ware etc. on near surface condition which highly affect fatigue strength and at the same part life-time. New material implemented for the latest designs of aero-engines parts generate challenges for machining processes to fulfil strict requirements of aviation standards. Finish machining is the most important stage of process influencing fatigue strength. cBN tool are often used for final stage of machining. The objective of this study was analysis of cutting mechanics during finish turning of modern nickel-cobalt based alloy with cBN insert. Observations of cutting tool wear and cutting parameters influence on the components of cutting force, surface roughness and residual stress are presented in this paper.
Twórcy
  • Pratt & Whitney Rzeszów S.A., ul. Hetmańska 120, 35-078 Rzeszów, Poland
  • Politechnika Rzeszowska im. Ignacego Łukasiewicza, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Politechnika Rzeszowska im. Ignacego Łukasiewicza, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Politechnika Rzeszowska im. Ignacego Łukasiewicza, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Choudhury IA., El-Baradie MA. Machinability of nickel-base super alloys: A general review. Journal of Materials Processing Technology 1998; 300(3–4):278–284.
  • 2. Ahmed G.M.S., Mohiuddin M.V., Sultana S., Dora H.K., Singh V.D. Microstructure Analysis and Evaluation of Mechanical Properties of Nickel Based Super Alloy CCA617. Proc. of 4th International Conference on Materials Processing and Characterization, Hyderabad, India 2015; Materials Today 2015; 2(4–5):1260–1269.
  • 3. Thellaputta G.R., Chandra P.S., Rao C.S.P. Machinability of Nickel Based Superalloys: A Review. Proc. of 5th International Conference of Materials Processing and Characterization, Hyderabad, India 2016; Materials Today 2017; 4(2):3712–3721.
  • 4. Polvorosa R., Suárez A., Lacalle LNL de., Cerrillo I., Wretland A., Veiga F. Tool wear on nickel alloys with different coolant pressures : Comparison of Alloy 718 and Waspaloy. Journal of Manufacturing Processes 2017; 26:44–56.
  • 5. Reynolds P.L., Stolz D.S. Superalloy compositions, articles and methods of manufacture. United Technology Corporation, US patent; US 9,783,873 B2, 2017.
  • 6. Reynolds P.L., Stolz D.S. Superalloy compositions, articles and methods of manufacture. United Technology Corporation, EU patent; EP 2 628 810 B1, 2016.
  • 7. Jemielniak K. Review of new developments in machining of aerospace materials. Journal of Machine Engineering 2021; 21(1):22–55.
  • 8. Ramana MV., Mohana Rao GK., Sagar B., Panthangi RK., Ravi Kumar BVR. Optimization of surface roughness and tool wear in sustainable dry turning of Iron based Nickel A286 alloy using Taguchi’s method. Cleaner Engineering and Technology 2021; 2:100034.
  • 9. Grzesik W. Podstawy skrawania materiałów konstrukcyjnych. Warszawa: Wydawnictwo Naukowo-Techniczne Sp. z o.o., 2010; 349–370.
  • 10. Rumian K., Zębala W. Optimization of cutting data of nickel-based sintered materials turning. Proc. of Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, Wilga, Poland 2019; 11176:1568–1576.
  • 11. Aerospace Industries Association. Rotor Manufacturing Project Team. Report No. DOT/FAA/AR-06/3: Guidelines to Minimize Manufacturing Induced Anomalies in Critical Rotating Parts 2006.
  • 12. Pratt & Whitney. Materials Control Laboratory Manual E-166 suppl. A 1997, rev. D. 2020.
  • 13. Klocke F., Krämer A., Sangermann H., Lung D. Thermo-mechanical tool load during high performance cutting of hard-to-cut materials. Proc. of 5th CIRP Conference on High Performance Cutting, Zurich, Switzerland 2012, 295–300.
  • 14. Oschelski T.B., Urasato W.T., Amorim H.J., Souza AJ. Effect of cutting conditions on surface roughness in finish turning Hastelloy® X superalloy. Proc. of International Conference on Materials, Processing & Characterization, Mathura, India 2020; Materials Today 2021; 44:532–537
  • 15. Liu R., Eaton E., Yu M., Kuang J. An Investigation of Side Flow during Chip Formation in Orthogonal Cutting. Proc. of 45th SME North American Manufacturing Research Conference, LA, USA 2017; Precedia Manufacturing 2017; 10:568–577.
  • 16. Brown I., Schoop J. An Iterative Size Effect Model of Surface Generation in Finish Machining. Journal of Manufacturing and Materials Processing 2020; 4(3):63.
  • 17. Wojciechowski S. Methods of minimum uncut chip thickness estimation during cutting with defined geometry tools. Mechanik 2018; 91(8–9):664–666.
  • 18. Hood R., Soo S.L., Aspinwall D.K., Mantle A.L. Tool life and workpiece surface integrity when turning an RR1000 nickel-based superalloy. International Journal of Advanced Manufacturing Technology 2018; 98(9–12):2461–2468.
  • 19. Yao C., Zhou Z., Zhang J., Wu D., Tan L. Experimental study on cutting force of face-turning Inconel 718 with ceramic tools and carbide tools. Advances in Mechanical Engineering 2017; 9(7):1–9.
  • 20. Grzesik W., Niesłony P., Habrat W., Sieniawski J., Laskowski P. Investigation of tool wear in the turning of Inconel 718 superalloy in terms of process performance and productivity enhancement. Tribology International 2018; 118:337–346.
  • 21. Sun J., Wang T., Su A., Chen W. Surface integrity and its influence on fatigue life when turning nickel alloy GH4169. Proc. of 4th CIRP Conference on Surface Integrity, Tianjin, China 2018; 71:478–483.
  • 22. Liang X., Liu Z., Wang B. State-of-the-art of surface integrity induced by tool wear effects in machining process of titanium and nickel alloys : A review. Measurement 2019; 132:150–181
  • 23. Zebala W., Struzikiewicz G., Rumian K. Cutting forces and tool wear investigation during turning of sintered nickel-cobalt alloy with CBN tools. Materials 2021; 14(7):1623.
  • 24. Ezugwu EO. Key improvements in the machining of difficult-to-cut aerospace superalloys. International Journal of Machine Tools and Manufacture 2005; 45(12–13):1353–1367.
  • 25. Muñoz-Sánchez A., Canteli JA., Cantero JL., Miguélez MH. Numerical analysis of the tool wear effect in the machining induced residual stresses. Simulation Modelling Practice and Theory 2011; 19(2):872–886.
  • 26. Srinivas K., Devaraj C. Optimization of Residual Stresses in Hard Turning of Super Alloy Inconel 718. Proc. of 7th International Conference of Materials Processing and Characterization, Telangana, India 2017; Materials Today 2018; 5(2):4592–4600.
  • 27. Jemielniak K. Obróbka Skrawaniem-podstawy, dynamika, diagnostyka. Warszawa: Oficyna wydawnicza Politechniki Warszawskiej, 2018.
  • 28. Habrat W. Analiza i modelowanie toczenia wykończeniowego tytanu i jego stopów. Rzeszow: Oficyna wydawnicza Politechniki Rzeszowskiej, 2019.
  • 29. Pawlus P., Reizer R., Wieczorowski M. Functional importance of surface texture parameters. Materials. MDPI 2021; 14(18): 5326
  • 30. Bigerelle M., Najjar D., Mathia T., Iost A., Coorevits T., Anselme K. An expert system to characterise the surfaces morphological properties according to their tribological functionalities: The relevance of a pair of roughness parameters. Tribology International 2013; 59:190–202.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6ea4b79d-cda5-4619-b67e-4e05da56f984
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.