Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The development of cities and peri-urban areas is exerting an increasingly strong impact on the natural environment and, at the same time, on the living conditions and health of people. Problems and challenges that need to be addressed include increasing air pollution in these areas, formation of a surface urban heat island (SUHI), water management disruptions (water scarcity or excess), and the destruction of natural habitats. One of the solutions that contributes to climate change mitigation is the introduction of blue-green infrastructure into the city space and urbanised areas. The research objective was to identify spatial features (geodata) that determine the optimum location of selected blue-green infrastructure (BGI) components, acquire them, and then use the Geographical Information System (GIS) to determine their optimum locations. As the first step, cartographic models were developed which indicated areas that enable the development of selected blue-green infrastructure components in the Olsztyn city area, Warmińsko-Mazurskie Province, Poland. The models were juxtaposed with other two models developed by the authors, i.e. a surface urban heat island model and a demographic model that showed the age structure of the city’s population. Consequently, maps with potential locations for the blue-green infrastructure were developed, while taking into account reference data from the National Land Surveying and Cartographic Resource and Landsat 8 images. Keywords: blue-green infrastructure, drainage system, GIS, Landsat 8 images, map, reference databases, retention, spatial analysis
Wydawca
Czasopismo
Rocznik
Tom
Strony
183--194
Opis fizyczny
Bibliogr. 44 poz., fot., rys., tab.
Twórcy
autor
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Institute of Geodesy and Civil Engineering, Department of Geoinformation and Cartography, Olsztyn, Poland
autor
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Institute of Geodesy and Civil Engineering, Department of Geodesy, St. Heweliusza 12, Olsztyn, Poland
Bibliografia
- Almaaitah, T. et al. (2021) “The potential of Blue-Green infrastructure as a climate change adaptation strategy: A systematic literature review,” Blue-Green Systems, 3(1), pp. 223–248. Available at: https://doi.org/10.2166/bgs.2021.016.
- Ampatzidis, P. and Kershaw, T. (2020) “A review of the impact of blue space on the urban microclimate,” Science of the Total Environment,” 730, 139068. Available at: https://doi.org/10.1016/j.scitotenv.2020.139068.
- Andreucci, M.B., Russo, A. and Olszewska-Guizzo, A. (2019) “Designing urban green blue infrastructure for mental health and elderly wellbeing,” Sustainability, 11(22), 6425. Available at: https://doi.org/10.3390/su11226425.
- Antoszewski, P., Świerk, D. and Krzyżaniak, M. (2020) “Statistical review of quality parameters of blue-green infrastructure elements important in mitigating the effect of the urban heat island in the temperate climate (C) zone,” International Journal of Environmental Research and Public Health, 17(19), 7093. Available at: https://doi.org/10.3390/ijerph17197093.
- Avery, L.M. (2012) Rural Sustainable Drainage Systems (RSuDS). Bristol: Environmental Agency.
- Badach, J. et al. (2022) “Developing the urban Blue-Green Infrastructure as a tool for urban air quality management,” Sustainability, 14(15), 9688. Available at: https://doi.org/10.3390/su14159688.
- Barsi, J.A., Barker, J.L. and Schott, J.R. (2003) “An Atmospheric Correction Parameter Calculator for a single thermal band earth-sensing instrument,” International Geoscience and Remote Sensing Symposium (IGARSS), 5, pp. 3014–3016. Available at: https://doi.org/10.1109/IGARSS.2003.1294665.
- Bartesaghi Koc, C., Osmond, P. and Peters, A. (2017) “Towards a comprehensive green infrastructure typology: a systematic review of approaches, methods and typologies,” Urban Ecosystems, 20, pp. 15–35. Available at: https://doi.org/10.1007/s11252-016-0578-5.
- Bowler, D.E. et al. (2010) “Urban greening to cool towns and cities: A systematic review of the empirical evidence,” Landscape and Urban Planning, 97(3) pp. 147–155. Available at: https://doi.org/10.1016/j.landurbplan.2010.05.006.
- Buldakova, E. (2022) “Urban greening and geo-environmental safety,” in C. Ha-Minh et al., (eds.), CIGOS 2021, Emerging Technologies and Applications for Green Infrastructure. Proceedings of the 6th International Conference on Geotechnics, Civil Engineering and Structures. Singapore: Springer, pp. 1467–1474. Available at: https://doi.org/10.1007/978-981-16-7160-9_148.
- Chang, C.R., Li, M.H. and Chang, S.D. (2007) “A preliminary study on the local cool-island intensity of Taipei city parks,” Landscape and Urban Planning, 80(4), pp. 386–395. Available at: https://doi.org/10.1016/j.landurbplan.2006.09.005.
- Cieślak, I. et al. (2019) “Assessment of residential areas of city on the example of Olsztyn,” IOP Conference Series: Materials Science & Engineering, 471(10), 102001. Available at: https://doi.org/10.1088/1757-899X/471/10/102001.
- Dennis, M. et al. (2018) “Mapping urban green infrastructure: A novel landscape-based approach to incorporating land use and land cover in the mapping of human-dominated systems,” Land, 7(1), 17. Available at: https://doi.org/10.3390/land7010017.
- Donati, G.F.A. et al. (2022) “Reconciling cities with nature: Identifying local blue-green infrastructure interventions for regional biodiversity enhancement,” Journal of Environmental Management, 316, 115254. Available at: https://doi.org/10.1016/j.jenvman.2022.115254.
- Drosou, N. et al. (2019) “Key factors influencing wider adoption of blue-green infrastructure in developing cities,” Water, 11(6), 1234. Available at: https://doi.org/10.3390/w11061234.
- Eadie, M. (2011) Water sensitive urban design for the coastal dry tropics (Townsville): Design objectives for stormwater management. Queensland: Townsville City Council. Available at: https://nla.gov.au/nla.obj-1203529631/view (Accessed: February 15, 2023)
- Feit, J. (2018) 4 Advantages of implementing bioswales: Vegetated swales provide a resilient stormwater management option. The Free Library. Available at: https://www.thefreelibrary.com/4+Advantages+of+Implementing+Bioswales%3A+VEGETATED+SWALES+PROVIDE+A...-a0540798209 (Accessed: June 08, 2023).
- Gábor, P. and Jombach, S. (2010) “The relation between the biological activity and the land surface temperature in Budapest,” Applied Ecology and Environmental Research, 7(3), pp. 241–251. Available at: http://dx.doi.org/10.15666/aeer/0703_241251.
- Ghofrani, Z., Sposito, V. and Faggian, R. (2017) “A comprehensive review of Blue-Green Infrastructure concepts,” International Journal of Environment and Sustainability, 6(1), pp. 15–36.
- Gobatti, L. et al. (2023) “Using satellite imagery to investigate bluegreen infrastructure establishment time for urban cooling,” Sustainable Cities and Society, 97, 104768. Available at: https://doi.org/10.1016/j.scs.2023.104768.
- GUGiK (2023) Baza danych obiektów topograficznych (BDOT10k) [Topographic objects database (BDOT10k)]. Warszawa: Główny Urząd Geodezji i Kartografii. Available at: https://www.geoportal.gov.pl/en/data/topographic-objects-database-bdot10k/ (Accessed: June 08, 2023).
- Hamel, P. and Tan, L. (2022) “Blue-green infrastructure for flood and water quality management in Southeast Asia: Evidence and knowledge gaps,” Environmental Management, 69(4) pp. 699–718. Available at: https://doi.org/10.1007/s00267-021-01467-w.
- IMGW (2023) Dane pomiarowo-obserwacyjne [Observation and measurement data]. Warszawa: Instytut Meteorologii i Gospodarki Wodnej Państwowy Instytut Badawczy. Available at: https://danepubliczne.imgw.pl/ (Accessed: June 10, 2023).
- Iwaszuk, E. et al. (2019) “Elementy błękitno-zielonej infrastruktury [Selected components of blue-green infrastructure],” in T. Bergier and A. Kowalewska (eds.) Błękitno-zielona infrastruktura dla łagodzenia zmian klimatu – katalog techniczny [Blue-green infrastructure for climate change mitigation – Technical catalogue]. Berlin: Ecologic Institute, Kraków: Fundacja Sendzimira, pp. 5–44.
- Jimenez-Munoz, J.C. et al. (2009) “Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data,” IEEE Transactions on Geoscience and Remote Sensing, 47(1), pp. 339–349. Available at: https://doi.org/10.1109/TGRS.2008.2007125.
- Kimic, K. and Ostrysz, K. (2021) “Assessment of blue and green infrastructure solutions in shaping urban public spaces – spatial and functional, environmental, and social aspects,” Sustainability, 13(19), 11041. Available at: https://doi.org/10.3390/su131911041.
- Krauze, K., Wagner, I. and Zalewski, M. (2014) “Blue aspects of green infrastructure,” Sustainable Development Applications Journal, 4/2013, pp. 144–155.
- Lee, A.C.K. and Maheswaran, R. (2011) “The health benefits of urban green spaces: A review of the evidence,” Journal of Public Health, 33(2) pp. 212–222. Available at: https://doi.org/10.1093/pubmed/fdq068.
- Mikkili, S., Panda, S.K. and Agarwal, S. (2021) “GIS-based integrated approach for sustainable management of ecology and environment with green and blue spaces,” Indian Journal of Ecology, 48(3), pp. 931–938.
- NWRM (2014) Individual NWRM retention ponds. Natural Water Retention Measures. Available at: http://nwrm.eu/sites/default/files/nwrm_ressources/u11_-_retention_ponds.pdf (Accessed: June 09, 2023).
- O’Donnell, E. et al. (2021) “International perceptions of urban blue-green infrastructure: A comparison across four cities,” Water, 13(4), 544. Available at: https://doi.org/10.3390/w13040544.
- Pluto-Kossakowska, J., Władyka, M. and Tulkowska, W. (2020) “Wykorzystanie technologii GIS w analizie zielonej i błękitnej infrastruktury [GIS technology in green and blue infrastructure analysis],” Roczniki Geomatyki, 18, 1(880) pp. 33–50.
- Sekertekin, A. and Bonafoni, S. (2020) “Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: Assessment of different retrieval algorithms and emissivity models and toolbox implementation,” Remote Sensing, 12(2), 294. Available at: https://doi.org/10.3390/rs12020294.
- Siehr, S.A., Sun, M. and Aranda Nucamendi, J.L. (2022) “Blue-green infrastructure for climate resilience and urban multifunctionality in Chinese cities,” Wiley Interdisciplinary Reviews: Energy and Environment, 11(5). Available at: https://doi.org/10.1002/wene.447.
- Sobrino, J.A. et al. (2008) “Land surface emissivity retrieval from different VNIR and TIR sensors,” IEEE Transactions on Geoscience and Remote Sensing, 46(2), pp. 316–327. Available at: https://doi.org/10.1109/TGRS.2007.904834.
- Thekkan, A.F. et al. (2022) “Understanding blue-green infrastructure through spatial maps: Contribution of Remote Sensing and GIS Technology,” in S. Dhyani et al. (eds.) Blue-green infrastructure across Asian countries. Singapore: Springer, pp. 123–138. Available at: https://doi.org/10.1007/978-981-16-7128-9_6.
- Thomas, C.J. and Bromley, R.D.F. (2000) “City-centre revitalisation: Problems of fragmentation and fear in the evening and night-time city,” Urban Studies, 37(8), pp. 1403–1429. Available at: https://doi.org/10.1080/00420980020080181.
- USGS (2019) Landsat 8 Data Users Handbook. Ver. 5.0. Reston: U.S. Geological Survey.
- USGS (no date) EarthExplorer. Reston: U.S. Geological Survey. Available at: https://earthexplorer.usgs.gov/ (Accessed: June 12, 2023).
- Valor, G.B. (2023) OGIMET – Professional information about meteorological conditions in the world. [Online]. Available at: http://ogimet.com/resynops.phtml.en (Accessed: June 15, 2023).
- Völker, S. et al. (2013) “Evidence for the temperature-mitigating capacity of urban blue space – a health geographic perspective,” Erdkunde, 67(4) pp. 355–371. Available at: http://www.jstor.org/stable/23595377 (Accessed: June 09, 2023).
- Wilson, S. et al. (2009) Sustainable drainage. Cambridge Design and Adoption Guide. Cambridge: Cambridge City Council. Available at: https://www.cambridge.gov.uk/media/5457/suds-design-and-adoption-guide.pdf (Accessed: July 06, 2023).
- Zalewski, M. et al. (2012) “Blue-green city for compensating global climate change,” The Parliament Magazine, 350, pp. 2–3.
- Zhou, C. and Wu, Y. (2020) “A planning support tool for layout integral optimization of urban blue–green infrastructure,” Sustainability, 12(4), 1613. Available at: https://doi.org/10.3390/su12041613.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e9bb5d1-1ff5-4a57-a0c5-1765622d9440