PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wykorzystanie odpadu szkła samochodowego do produkcji epoksydowego polimerobetonu

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
The application of automotive glass waste in the production of epoxy polymer concrete
Języki publikacji
PL EN
Abstrakty
PL
W pracy przedstawiono badania obejmujące przygotowanie kruszywa ze stłuczki przednich szyb samochodowych. Dodanie tego kruszywa - zmieszanego w różnych proporcjach z drobnym piaskiem kwarcowym, jako fazy wzmacniającej polimerobeton, na osnowie żywicy epoksydowej. Zbadano otrzymane kompozyty stosując próbę zginania i ściskania oraz odporność na uderzenia, metodą Charpy’ego. Oznaczono porowatość, nasiąkliwość i gęstość pozorną tych materiałów. Przeprowadzone badania wykazały, że zastosowanie mielonych szyb samochodowych w polimerobetonie jest dobrą metodą wykorzystania tych odpadów. Największą wytrzymałość na ściskanie uzyskały kompozyty zawierające 20% objętościowych mielonych szyb samochodowych, która wyniosła 101 MPa. Jest to wytrzymałość blisko 7 razy większa od tradycyjnego betonu, który osiąga około 15 MPa. Największą wytrzymałość na zginanie miał kompozyt zawierający 35% obj. szkła. Próbki polimerobetonu nie wykazały dużej odporności na uderzenie: 5,85 - 10,13 kJ/m2. Odporność na uderzenie wzrastała wraz ze wzrostem zawartości szkła. Największą wytrzymałość uzyskał kompozyt zawierający 50% obj. szkła. Z próbek polimerobetonów najlepsze właściwości wykazała mieszanina o składzie 35% piasku, 35% mielonego szkła i 30% żywicy epoksydowej. Otwarta porowatość tradycyjnego betonu wynosi 15,91%, a polimerobetonu była mniejsza od 0,38%. Duża różnica w porowatości otwartej i w absorpcji wody, uzyskana dla tradycyjnego betonu i polimerobetonu, pozwalała przypuszczać, że ten ostatni będzie miał lepszą mrozoodporność. Wyniki badań wyraźnie wykazują znacznie lepsze właściwości mechaniczne polimerobetonu od betonu tradycyjnego.
EN
In this paper, the production of aggregate from car windshield cullet and the use of this aggregate, in various compositions with fine quartz sand, as the reinforcing phase of the epoxy matrix polymer concrete were used and the obtained samples were tested. The bending and compressive strength, Charpy’s impact resistance tests were performed on the obtained composites. The porosity, water absorption, and density were also determined. The tests performed have shown that the application of car windshield cullet in polymer concrete, seems to be a good way to recycle this waste. The highest compressive strength, equal to 101 MPa, was obtained by composites containing 20 vol% of milled glass. It is nearly 7 times higher than the value of traditional concrete tested simultaneously, which has about 15 MPa. The highest flexural strength was noted for the composite containing 35 vol% of the glass. Polymer concrete samples did not show high impact resistance, which was in the range of 5.85 - 10.13 kJ/m2. However, it increases with increasing glass content and the highest value was obtained for the composite containing 50% of the glass volume. Among the polymer concrete samples, the best properties were obtained for the mixture of 35% sand, 35% ground glass and 30% epoxy resin. Open porosity of traditional concrete is 15.9%, and for polymer concrete it was lower than 0.38%. The large difference in open porosity and water absorption for traditional concrete and polymer concrete, allow us to conclude that the latter will have higher frost resistance. The test results clearly show the significantly better mechanical properties of polymer concrete than of traditional concrete.
Czasopismo
Rocznik
Strony
402--412
Opis fizyczny
Bibliogr. 39 poz., il., tab.
Twórcy
  • Faculty of Materials Science, Silesian University of Technology, Katowice, Poland
  • Engineering Faculty & Materials Science and Engineering, Gebze Technical University, Kocaeli/TURKEY
  • Engineering Faculty & Materials Science and Engineering, Gebze Technical University, Kocaeli/TURKEY
  • Faculty of Materials Science, Silesian University of Technology, Katowice, Poland
Bibliografia
  • 1. https://www.britannica.com/technology/cement-building-material (2021, accessed 16 November 2021).
  • 2. D. Kruger, Recent developments in the use of polymer concrete. Appl Phys Lett 95: 233116 (2009).
  • 3. Y. Ohama, Concrete-Polymer Composites - The Past, Present and Future. KEM; 466: 1-14 (2011).
  • 4. W.S. Wahby. Fifty Years’ History of Polymers in Concrete in Review. Polymers in Concrete, 13-22 (2003)
  • 5. S. Chandra, Y. Ohama, Properties of Concrete-Polymer Composites. Polymers in Concrete. 1st ed. Boca Raton: CRC Press, 111-147 (1994).
  • 6. H. Li, J. Sun, J. Chen et al. Proceedings of the 2016 International Forum on Energy, Environment and Sustainable Development, Shenzhen, China, 733-738 (2016).
  • 7. K.S. Yeon, K.W. Kim, J.D. Choi, et al. Research Trends of Concrete - Polymer Composites in Korea. Polymers in Concrete. 1st ed. London: CRC Press, 8-17 (1997).
  • 8. E. Kirlikovali, Polymer/concrete composites - A review. Polym Eng Sci 21, 507-509 (1981). https://doi.org/10.1002/pen.760210811
  • 9. G. Martínez-Barrera, V. Enrique, O. Gencel et al. Polymer concretes: A description and methods for modification and improvement. J Mater Educ 33, 37-52 (2011).
  • 10. W.F. Chen, E. Dahl-Jorgensen, Polymer-impregnated concrete as a structural material. Mag Concr Res 26, 16-20 (1974). https://doi.org/10.1680/macr.1974.26.86.16
  • 11. A. Piskin, Polimer Beton Üretiminde Cam Tozu Kullanılabilirliğinin Araştırılması. MS Thesis, Sakarya University, Turkey, (2010).
  • 12. M. Sautya, What is Polymer Concrete In Details And Their Types & Uses, Civil Engineering, www.civilnoteppt.com/what-is-polymer-concrete-in-details-and-their-types-and-uses/#Types_of_Polymer_Concrete (accessed 17 Nov 2021)
  • 13. T. Hop. Betony Polimerowe Tom I. Wydawnictwo politechniki Śląskiej, Gliwice, Poland, (1992).
  • 14. T. Hop, Betony Polimerowe Tom II. Wydawnictwo politechniki Śląskiej, Gliwice, Poland, (1992).
  • 15. M. Kozioł, Effect of thread tension on mechanical performance of stitched glass fibre-reinforced polymer laminates - experimental study, Journal of Composite Materials 47, 16, 1919 - 1930 (2013). https://doi.org/10.1177/0021998312452179
  • 16. M. Kozioł, Evaluation of classic and 3D glass fiber reinforced polymer laminates through circular support drop weight tests, Composites Part B 168, 561 - 571 (2019), https://doi.org/10.1016/j.compositesb.2019.03.078
  • 17. G. Sathyamoorthy, R. Vijay, D. Lenin Singaravelu, Brake friction composite materials: A review on classifications and influences of friction materials in braking performance with characterizations, Proceedings of the Institution of Mechanical Engineers Part J, in press, First Published December 17, 2021, https://doi.org/10.1177/13506501211064082
  • 18. K. Mistewicz, M. Jesionek, M. Nowak, M. Kozioł, SbSeI pyroelectric nanogenerator for a low temperature waste heat recovery, Nano Energy 64, 103906, (2019) https://doi.org/.1016/j.nanoen.2019.103906
  • 19. ACI Committee 548. Polymer Concrete - Structural Applications, State of the Art Report. Report, American Concrete Institute, Detroit, (1996).
  • 20. M.E. Doody, R. Morgan, Polymer-Concrete Bridge-Deck Overlays. Report, New York State Department of Transportation, (1993).
  • 21. J. Dahlberg B. Phares, Polymer Concrete Overlay Evaluation. Report, Iowa State University, (2016).
  • 22. C. Vipulanandan, E. Paul, Characterization of Polyester Polymer and Polymer Concrete. J Mater Civ 5, 62-82 (1993). https://doi.org/10.1061/(ASCE)0899-1561(1993)5:1(62)
  • 23. M. Kozioł, N. Żuczek, P. Olesik et al. Preliminary analysis of concept of producing polymer concrete surface for outdoor terraces. Composites Theory and Practice 20, 102-110 (2020).
  • 24. J. Terescenko, A. Bitins, V. Shestakov, R. Chatys, J. Maklakov, Algorithm for analyzing deviations and irregularities in the functioning of the airline’s structural units and personnel in the face of uncertainty. Aviation 24, 2, 51-56 (2020). https://doi.org/10.3846/aviation.2020.12375
  • 25. M. Nodehi, Epoxy, polyester and vinyl ester based polymer concrete: A review. Innov Infrastruct Solut 7, (2021). https://doi.org/10.1007/s41062-021-00661-3
  • 26. W. Ferdous, A. Manalo, S. Hong et al. Optimal design for epoxy polymer concrete based on mechanical properties and durability aspects. Constr Build Mater 232: 117229 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117229
  • 27. L. Czarnecki, Polymer concretes, Cem. Wapno Beton 15 (2), 63–85 (2010).
  • 28. R. Bedi, R. Chandra, S.P. Singh, Reviewing some properties of polymer concrete. Indian Concr J 88, 47-68 (2014).
  • 29. V. Polyakov, R. Chatys, Acoustic conductance of a thick-walled anisotropic spherical shell submerged in liquid. Aviation 18, 1, 52–55 (2014). https://doi.org/10.3846/16487788.2014.865937
  • 30. R. Bedi, R. Chandra, S.P. Singh, Mechanical Properties of Polymer Concrete. J Compos 2013, 948745 (2013). https://doi.org/10.1155/2013/948745
  • 31. W.P. Lokuge, T. Aravinthan, Mechanical Properties of Polymer Concrete with Different Types of Resin. Proceedings of the 22nd Australasian Conference on the Mechanics of Structures and Materials, Sydney, Australia, 1147-1152 (2012). CRC Press: Balkema. https://doi.org/10.1201/b15320-204
  • 32. B. Zegardło, S. Maciej, O. Paweł et al., Physico-Mechanical Properties and Microstructure of Polymer Concrete with Recycled Glass Aggregate. Materials 7: 1213 (2018). https://doi.org/10.3390/ma11071213
  • 33. L.R. Dharani, F.S. Ji, Dynamic Analysis of Normal Impact of Occupant Head on Laminated Glass. SAE Technical Paper 980862, (2018). https://doi.org/10.4271/980862
  • 34. J. Xu, Y. Li, Crack analysis in PVB laminated windshield impacted by pedestrian head in traffic accident. Int J Crashworthiness 14, 63-71 (2009). https://doi.org/10.1080/13588260802462427
  • 35. M. Tupy, P. Mokrejs, D. Merinska et al. Windshield recycling focused on effective separation of PVB sheet. J Appl Polym Sci 131 (2014). https://doi.org/10.1002/app.39879
  • 36. H. Alhazmi H, S.A.R. Shah, M.K. Anwar et al. Utilization of Polymer Concrete Composites for a Circular Economy: A Comparative Review for Assessment of Recycling and Waste Utilization. Polymers 13, 2135 (2021). https://doi.org/10.3390/polym13132135
  • 37. J. Hodul, J. Hodna, R. Dorchytka et al. Utilization of Waste Glass in Polymer Concrete. MSF 865, 171-177 (2016). https://doi.org/10.4028/www.scientific.net/MSF.865.171
  • 38. M. Saribiyik, A. Piskin, A. Saribiyik, The effects of waste glass powder usage on polymer concrete properties. Constr Build Mater 47, 840-844 (2013). https://doi.org/10.1016/j.conbuildmat.2013.05.023
  • 39. R. Kumar, A Review on Epoxy and Polyester Based Polymer Concrete and Exploration of Polyfurfuryl Alcohol as Polymer Concrete. J Polym 2016, 1-13 (2016). https://doi.org/10.1155/2016/724974 3
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e9b9fd4-52fc-4e58-9da1-1e7cf75bb842
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.