PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of contamination in Namson Landfill, Hanoi, Vietnam by hydrogeophysical methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena stopnia skażenia terenu na obszarze składowiska odpadów Namson w Hanoi (Wietnam) z wykorzystaniem metod hydro-geofizycznych
Języki publikacji
EN
Abstrakty
EN
The main objective of this study was to assess the environmental impact of the subsurface geological structure in Nam Son landfill by hydrogeophysical method. The Electrical Resistivity Tomography (ERT), Self-Potential (SP) and Very Low Frequency (VLF) method was used for geological structure investigation. Three profiles (total 900 m long) of two-dimensional ERT, VLF density sections and 180 SP data points scattered within the study area near the disposal site were implemented. Surface water and groundwater samples were collected from 10 sites in the area for hydrochemical analysis. Interpretations of geophysical data show a low resistivity zone (<15 Ω m), which appears to be a fully saturated zone with leachate from an open dumpsite. There is a good correlation between the geophysical investigations and the results of hydrochemical analysis.
PL
Podstawowym celem pracy było określenie stopnia oddziaływania na środowisko w podpowierzchniowych warstwach geologicznych na obszarze składowiska odpadów Nam Son przy wykorzystaniu metod hydro-geofizycznych. W badaniach budowy geologicznej terenu wykorzystano metodę obrazowania elektrooporowego (Electrical Resistivity Tomography – ERT), metodę potencjałów własnych (Self-Potential – SP) oraz badania elektromagnetyczne bardzo niskich częstotliwości (Very Low Frequency – VLF). Wytypowano trzy profile (o całkowitej długości 900 m) do dwuwymiarowego obrazowanie ERT oraz siatki gęstości do badania elektromagnetycznego VLF oraz 180 rozproszonych punktów do badań metodą potencjałów własnych na badanym terenie. Próbki wód powierzchniowych i gruntowych do analizy chemicznej pobrano z 10 lokalizacji na terenie składowiska. Interpretacja danych geofizycznych wykazała istnienie strefy charakteryzującej się niskimi oporami (<15 Ω), w pełni nasyconej odpadami ciekłymi wypłukiwanymi z otwartego składowiska. Stwierdzono wysoki poziom korelacji pomiędzy rezultatami badań geofizycznych a wynikami analiz chemicznych.
Rocznik
Strony
397--416
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
autor
  • Graduate University of Science and Technology, Vast; A21, 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
autor
  • Institute of Geophysics, Vast; A8, 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
autor
  • Institute of Geophysics, Vast; A8, 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
Bibliografia
  • [1] Abudeif A.M., 2015. Integrated electrical tomography and hydro-chemical analysis for environmental assessment of El-Dair waste disposal site, west of Sohag city, Egypt. Environmental Earth Sciences 74 (7), 5859-5874; DOI:10.1007/s12665-015-4610-5.
  • [2] Abu-Zeid N., Bianchini G., Santarato G., Vaccaro C., 2004. Geochemical characterization and geophysical mapping of Landfill leachates: the Marozzo canal case study (NE Italy). Environ. Geol. 45 439-447.
  • [3] AGI, 2003. The SuperSting with Swift automatic resistivity and IP system instruction manual. Advanced Geosciences, Inc., Austin, Texas.
  • [4] Ahmed A., Sulaiman W., 2001. Evaluation of groundwater and soil pollution in a landfill area using electrical resistivity imaging survey. Environ. Manag. 28 (5), 655-663.
  • [5] Ayolabi E.A., Oluwatosin L.B., Ifekwuna C.D., 2015. Integrated geophysical and physicochemical assessment of Olushosun sanitary landfill site, southwest Nigeria. Arabian Journal of Geosciences 8 (6), 4101-4115, doi:10.1007/s12517-014-1486-8.
  • [6] Benson A.K., Payne K.L., Stubben M.A., 1997. Mapping groundwater contamination using dc resistivity and VLF geophysical methods – A case study. Geophysics 62/1; 80-86. – USA: Society of Exploration Geophysicists.
  • [7] Bernstone C., Dahlin T., Ohlsson T., Hogland W., 2000. DC-resistivity mapping of internal landfill structures: two preexcavation surveys. Environ. Geol. 39 (3-4), 360-368.
  • [8] Bhalla G., Kumar A., Bansal A., 2011. Assessment of groundwater pollution near municipal solid waste landfill. Asian J. Water Environ. Pollut. 8 (1), 41-51.
  • [9] Bui D.D., Kawamura A., Tong T.N., Amaguchi H., Naoko N., 2012. Spatio-temporal analysis of recent groundwater-level trends in the Red River Delta, Vietnam. Hydrogeol. J. 20, 1635-1650.
  • [10] Cardarelli E., Fischanger F., 2006. 2D data modelling by electrical resistivity tomography for complex subsurface geology. Geophys. Prospect. 54, 121-133.
  • [11] Chambers J.C., Kuras O., Meldrum P.I., Ogilvy R.D., Hollands J., 2006. Electrical resistivity tomography applied to geologic, hydrogeologic, and engineering investigations at a former waste-disposal site. Geophysics 71 (6), B231-B239.
  • [12] Corwin R.F., 1990. The self-potential method for environmental and engineering applications. Geotech. Environ. Geophys. 1, 127-145.
  • [13] El Maghraby M.M.S., El Fiky A.A., Nawar A.F., 2014. Hydrogeophysical investigations on the Pleistocene aquifer, Kom Hamada area, West Nile Delta, Egypt. Arab. J. Geosci. 7 (9), 3839-3853, doi:10.1007/s12517-013-1047-6.
  • [14] Fraser D.C., 1969. Contouring of VLF-EM data. Geophysics 34, 958-967.
  • [15] Frederico R., Phygeo W., Márcio M., Guilherme M., Paulo K.N.A., 2013. The self-potential (SP) method applied for investigating the contamination in the vicinity of the Estrutural city landfill, in Brasilia-DF. In: 13th international congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil, p. 1-4.
  • [16] Frid V., Liskevich G., Doudkinski D., Korostishevsky N., 2008. Evaluation of landfill disposal boundary by means of electrical resistivity imaging. Environ. Geol. 53, 1503-1508. doi:10.1007/s00254-007-0761-3.
  • [17] Gamvroula D., Alexakis D., Stamatis G., 2013. Diagnosis of groundwater quality and assessment of contamination sources in the Megara basin (Attica, Greece). Arab. J. Geosci. 6 (7), 2367-2381, doi:10.1007/s12517-012-0533-6.
  • [18] Ganiyu S.A., Badmus B.S., Oladunjoye M.A., Aizebeokhai A.P., Ozebo V.C., Idowu O.A., Olurin O.T., 2016. Assessment of groundwater contamination around active dumpsite in Ibadan southwestern Nigeria using integrated electrical resistivity and hydrochemical methods. Environmental Earth Sciences, First online: 11 April 2016; DOI: 10.1007/s12665-016-5463-2.
  • [19] Giang N.V., Duan N.B., Thanh L.N., Hida N., 2013. Geophysical techniques to aquifer locating and monitoring for industrial zones in North Hanoi, Vietnam. Acta Geophysica 61, 6, 1573-1597. DOI. 10.2478/s11600-013-0147-8.
  • [20] Giang N.V., Thanh L.N., Hiep V.Q., Hida N., 2014. Hydrological and hydrogeological characterization of groundwater and river water in the North Hanoi industrial area, Vietnam. Environmental Earth Sciences 71, 11, 4915-4924. DOI:10.1007/s12665-014.3086-z.
  • [21] Gharibi M., Pedersen L.B., 1999. Transformation of VLF data into apparent resistivities and phases. Geophysics 64, 5, 1393-1402.
  • [22] Griffiths D.H., Barker R.D., 1993. Two-dimensional resistivity imaging and modeling in areas of complex geology. J. Appl. Geophys. 29, 211-226.
  • [23] Guerin R., Begassat Ph., Benderitter Y., David J., Tabbagh A., Thiry M., 2004. Geophysical study of the industrial waste land in Mortagne-du-Nord (France) using electrical resistivity. Near Surf. Geophys. 3, 137-143.
  • [24] Gupta G., Patil J., Maiti S., Erram V.C., Pawar N., Mahajan S., Suryawanshi R., 2015. Electrical resistivity imaging for aquifer mapping over Chikotra basin, Kolhapur district, Maharashtra. Environ. Earth Sci. 73, 8125-8143.
  • [25] Hida N., Giang N.V., 2012. Decline in groundwater levels in Thang Long industrial park within the area of Northwest Hanoi, Vietnam. J. Japan Assoc. Hydrol. Sci. 42, 4, 167-172 (in Japanese).
  • [26] Hubbard S.S., Peterson J.E. et al., 1997. Estimation of permeable pathways and water content using tomographic radar data. The leading EDGE 16 (11), 1623-1630.
  • [27] Karlik G., Kaya M.A., 2001. Investigation of groundwater contamination using electric and electromagnetic methods at an open waste-disposal site. A case study from Isparta, Turkey. Environ. Geol. 40 (6), 725-731.
  • [28] Karous M., Hjelt S.E., 1983. Linear filtering of VLF dip-angle measurements. Geophys. Prosp. 31, 782-794.
  • [29] Kayabali K., Yuksel F.A., Yeken T., 1998 Integrated use of hydrochemistry and resistivity methods in groundwater contamination caused by a recently closed solid waste site. Environ. Geol. 36 (3-4), 227-234.
  • [30] Keller G.V., Frischknecht F.C., 1966. Electrical methods in geophysical prospecting. Pergamon Press Inc., Oxford.
  • [31] Kumar D., 2012. Efficacy of ERT technique in mapping shallow subsurface anomaly. J. Geol. Soc. India 80, 304-307.
  • [32] Loke M.H., Barker R.D., 1996. Rapid least squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys. Prospect 44, 131-152.
  • [33] Loke M.H., 2000. RES2DINV version 3.44 for windows 95/98 and NT: rapid 2D resistivity and IP inversion using the least squares method. Advanced Geosciences Inc., Austin.
  • [34] Maillet G.M., Rizzo E., Revil A., Vella C., 2005. High resolution electrical resistivity tomography (ERT) in a transition zone environment: application for detailed internal architecture and infilling processes study of a Rhône River paleo-channel. Mar. Geophys. Res. 6, 317-328. DOI:10.1007/s11001-005-3726-5.
  • [35] Martinho E., Almeida F., 2006. 3D behaviour of contamination in landfill sites using 2D resistivity/IP imaging: case studies in Portugal. Environ. Geol. 49, 1071-1078.
  • [36] Matias M.S., Marques da Silva M., Ferreira P., Ramalho E., 1994. A geophysical and hydrogeological study of aquifers contamination by a landfill. J. Appl. Geophys. 32, 155-162.
  • [37] McNeill J.D., 1980. Use of electromagnetic methods for groundwater studies. In: Ward S.H. (ed) Geotechnical and environmental geophysics. Soc. Expl. Geophys. p. 194-198.
  • [38] Meju M.A., 2000. Geoelectrical investigation of old/abandoned landfill sites in urban areas: model development with a genetic diagnosis approach. J. Appl. Geophys. 44, 115-150.
  • [39] Meju M.A., 2006. Geoelectrical characterization of covered landfill. In: Vereecken H et al. (eds) Applied hydrogeophysics, p. 319-339.
  • [40] Pantelis S., Nikos P., Ilias P., Maria K., Filippos V., Apostolos S., Thrassyvoulos M., 2010. Application of integrated methods in mapping waste disposal areas. Environ. Geol. 53, 661-675. doi:10.1007/s00254-007-0681-2.
  • [41] Paul T.I., Debra R.R,, Marja E., Roger G., Nitin G.B.H., Sreeram J., Timothy G.T., Ramin Y., 2007. Review of state of the art methods for measuring water in landfills. Waste. Manag. 27, 729-745.
  • [42] Porsani J.L., Filhob W.M., Vagner R.E., Shimelesa F., Douradob J.C., Moura H.P., 2004. The use of GPR and VES In delineating a contamination plume in a landfill site: a case study in SE Brazil. J. Appl. Geophys. 55, 199-209.
  • [43] Rao G.T., Rao V.V.S.G., Padalu G. et al., 2014. Application of electrical resistivity tomography methods for delineation of groundwater contamination and potential zones. Arab. J. Geosci. 7 (4), 1373-13847, doi:10.1007/s12517-013-0835-3.
  • [44] Rapti-Caputo D., Vaccaro C., 2006. Geochemical evidences of landfill leachate in groundwater. Eng. Geol. 85, 111-121.
  • [45] Sam D.X., (eds.), 2010. The natural conditions of the natural resources and the environment in the development of space-oriented Hanoi capital. Hanoi Published House, p. 590 (in Vietnamese).
  • [46] Sharma P.V., 1997. Environmental and engineering geophysics. Cambridge University Press, Cambridge.
  • [47] Smith R.C., Sjogren D.B., 2006. An evaluation of electrical resistivity imaging (ERI) in Quaternary sediments, southern Alberta, Canada. Geosphere 2 (6), 287-298.
  • [48] Tanabe S., Hori K., Saito Y., Haruyama S., Vu P.V., Kitamura A., 2003. Song Hong (Red River) delta evolution related to millennium-scale Holocene sea-level changes. Quaternary Sci. Rev. 22, 2345-2361.
  • [49] Telford W.M., Geldart L.P., Sheriff R.E., 1990. Applied Geophysics. 2nd edition, Cambridge University Press, 792 p.
  • [50] Thuy N.T., Kawamura A., Thanh T.N., Nakagawa N., AmaguchiH., Gilbuena R. Jr., 2015. Hydrogeochemical assessment of groundwater quality during dry and rainy seasons for the two main aquifers in Hanoi, Vietnam. Environmental Earth Sciences 73, 8, 4287-4303, DOI: 10.1007/s12665-014-3713-8.
  • [51] Ustra A.T., Elis V.R., Mondelli G., Zuquette L.V., Giacheti H.L., 2012. Case study: a 3D resistivity and induced polarization imaging from downstream a waste disposal site in Brazil. Environ. Earth Sci. 66, 763-772.
  • [52] VLF WADI instrument manual introduction, 1995. ABEM Sweden.
  • [53] WHO, 2007. Water for pharmaceutical use in quality assurance of pharmaceuticals A compendium of Guidelines and Related materials. 2nd ed. World Health Organization, Geneva, p. 170-187.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e9af4a0-9108-421d-a286-b2d7c1a8a05b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.