Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the current research, strong strain-hardening capability in 1045 carbon steel was achieved by cold rolling and heat treatment of the lamellar structure. After 60% cold rolling, the proeutectoid ferrite and pearlite were severely elongated along the rolling direction. Cementite layers with brittle nature were fragmented under the action of stress and also by shear band formation during rolling. The lamellar heterogeneous microstructure of the heat-treated samples was formed by the proeutectoid ferrite as the soft domain and the pearlite as the hard domain. Increasing the heat treatment duration promoted the spheroidization transformation of cementite, and the spheroidization degree of cementite increased. With the increase in the time of heat treatment, the number of recrystallized grains is increased. Heat treatment led to weakening the deformation texture (⟨100⟩‖ND or θ fiber) and strengthening the recrystallization texture (⟨110⟩‖ND or ζ fiber). The heat-treated steels revealed an average microhardness value much higher than its macrohardness due to changes in the texture of ferrite grains. Heat treatment decreased the strength and hardness, and increased the ductility and toughness of steel compared to the cold-rolled sample owing to the annihilation of dislocations and the strengthening transition from strain hardening to grain refinement. The heat-treated samples exhibited a wider range of uniform plastic deformation and a larger strain hardening rate than the cold-rolled sample owing to the occurrence of the recovery of strain hardening rate phenomenon. The appropriate collocation of the fine spherical cementite and the soft/hard domains (with a large difference in mechanical properties) was beneficial to obtaining excellent strength-ductility balance in plain medium carbon steel. After heat treatment, the extent of ductile fracture considerably increased. With increasing the time of heat treatment from 1 to 3 h, the number of lamellar dimples decreased owing to the creation of more fine spherical cementite
Czasopismo
Rocznik
Tom
Strony
art. no. e44, 2024
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
- Department of Materials Engineering, Babol Noshirvani University of Technology, Shariati Ave., Babol 47148-71167, Iran
autor
- Department of Materials Engineering, Babol Noshirvani University of Technology, Shariati Ave., Babol 47148-71167, Iran
autor
- Department of Materials Engineering, Babol Noshirvani University of Technology, Shariati Ave., Babol 47148-71167, Iran
Bibliografia
- 1. Xing X, Huang S, Li L, Ouyang J, Gao J, Chen S, Peng Z. Optimizing dislocation strengthening in high-strength medium-carbonsteel via fast induction heating quenching & tempering. J MarketRes. 2023;25:832–9.
- 2. Du J, Li J, Feng Y, Ning J, Liu S, Zhang F. Effect of layered het-erogeneous microstructure design on the mechanical behavior of medium carbon steel. Mater Des. 2022;221: 110953.
- 3. Huang JX, Liu Y, Xu T, Chen XF, Lai QQ, Xiao LR, Pan ZY,Gao B, Zhou H, Zhu YT. Dual-phase hetero-structured strategyto improve ductility of a low carbon martensitic steel. Mater SciEng A. 2022;834: 142584.
- 4. Khorasani F, Jamaati R, Jamshidi Aval H. Extraordinarystrength–ductility–toughness in Fe–0.08C plain low-carbonsteel via introducing weblike martensite: towards the third generation. Mater Chem Phys. 2023;307:128246.
- 5. Gao B, Wang L, Liu Y, Liu J, Xiao L, Sui Y, Sun W, Chen X,Zhou H. Enhanced strength and ductility of the low-carbon steelwith heterogeneous lamellar dual-phase structure produced bycyclic intercritical rolling. J Market Res. 2023;23:6230–43.
- 6. Yaghoobi F, Jamaati R, Jamshidi Aval H. A new 1.2 GPa-strength plain low carbon steel with high ductility obtained bySRDR of martensite and intercritical annealing. Mater Sci EngA. 2020;788:139584.
- 7. Xu XN, Li XL, Gou XQ, Li Y, Ye QB, Tian Y. Synergisticenhancement of strength, ductility, and toughness in a low carbon micro-alloy steel with an ultrafine-grained heterogeneouslamellar structure. Mater Sci Eng A. 2023;878: 145205.
- 8. Ning J-L, Zhang Y-T, Huang L, Feng Y-L. Stabilized uniformdeformation in a high-strength ferrite-cementite steel with multiscale lamellar structure. Mater Des. 2017;120:280–90.
- 9. Kazemi-Navaee A, Jamaati R, Aval HJ. Asymmetric cold roll-ing of AA7075 alloy: the evolution of microstructure, crystal-lographic texture, and mechanical properties. Mater Sci Eng A.2021;824: 141801.
- 10. Li Z, La P, Sheng J, Shi Y, Zhou X, Meng Q. Outstanding synergy of superior strength and ductility in heterogeneous structural 1045 carbon steel. Met Mater Int. 2021;27(8):2562–74.
- 11. Hamshini R, Tripathy B, Paul S, Narayanswamy S, Saha R,Bhattacharjee PP. Annealing-mediated microduplex structureand texture evolution in severely cold-rolled nanolamellar pearlite: a perspective on the effect of starting inter-lamellar spacing.Metall Mater Trans A. 2023;54(4):1199–212.
- 12. Oliaei M, Jamaati R. Improvement of the strength-ductility-toughness balance in interstitial-free steel by gradient microstructure. Mater Sci Eng A. 2022;845: 143237.
- 13. Storojeva L, Ponge D, Kaspar R, Raabe D. Development of microstructure and texture of medium carbon steel during heavywarm deformation. Acta Mater. 2004;52(8):2209–20.
- 14. Takaki S, Masumura T, Tsuchiyama T. Young’s modulus ofsingle crystalline iron and elastic stiffness. Tetsu-to-Hagane.2020;106(9):679–82.
- 15. Liu G, Zhang M, Feng Y, Cao K, Li S, Wang Y. Influence of warm rolling temperature on multi-scale lamellar structure and mechanical properties of medium carbon steel. J Market Res.2022;18:3739–50.
- 16. Cheng Z, Wan T, Lu L. Interface strain gradient enabled highstrength and hardening in laminated nanotwinned Cu. ActaMater. 2023;256: 119138.
- 17. Li Z, La P, Ma J, Guo X, Sheng J, Shi Y, Zhou X. Superiorstrength and ductility of 1045 steel with heterogeneous composite structure. Mater Lett. 2019;238:191–3.
- 18. Zhang D, Zhang M, Cao K, Ning J, Feng Y. Effect of annealingtime on microstructure stability and mechanical behavior of ferrite-cementite steel with multiscale lamellar structure. Metall Mater Trans B. 2021;52(2):1023–33.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e9a657f-bb98-4283-82b7-0f0f496cef87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.