PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Plant Diversity in a Constructed Wetland for Pollutant Parameter Processing on Leachate: A Review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The leachate from landfill constitutes high pollutant. The high pollutant content impacts the public and ecosystem health surrounding the landfill site. Therefore, it is essential to process the leachate first before its disposal to water body. Landfill leachate processing can be carried out using three processes, i.e., physical-chemical, biological, and a combination of those. A constructed wetland is currently considered as an environmentally friendly technology to tackle water pollution and leachate. Another advantage of a constructed wetland is the low operational cost and natural maintenance, so it can be a solution related to the cost, technical, and operating system problems of conventional processing. This article aimed to discover the characteristic differences of landfill leachate, constructed wetland installation position, and types of plants used in the constructed wetland. This article was written using the literature reviews from experimental studies on water processing with the same parameter for leachate and leachate processing. The literature review result shows that landfill leachate processing depends on different leachate characteristics. The toxic quality of landfill leachate was found through a toxicity test. Leachate treated by the physical-chemical process contains toxic and non-biodegradable organic substances. Hence, the physical-chemical methods should be applied at the beginning of the process and coupled with the biological method at the end of the process to improve the treatment quality. A constructed wetland with diverse plants was found to be more effective in biomass distribution, less prone to seasonal variations, and had a more diverse microbe population than the constructed wetland with a single plant.
Rocznik
Strony
240--255
Opis fizyczny
Bibliogr. 136 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, 60111, Indonesia
  • Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, 60111, Indonesia
  • Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, 60111, Indonesia
Bibliografia
  • 1. Abbas, A.A., Jingsong, G., Ping, L.Z., Ya, P.Y., Al-Rekabi, W.S., 2009. Review on landfill leachate treatments. Am. J. Appl. Sci. https://doi.org/10.3844/ajas.2009.672.684
  • 2. Abou-Elela, S.I., Hellal, M.S., 2012. Municipal wastewater treatment using vertical flow constructed wetlands planted with Canna, Phragmites and Cyprus. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2012.06.044
  • 3. Agami, M., Reddy, K.R., 1990. Competition for space between Eichhornia crassipes (Mart.) Solms and Pistia stratiotes L. cultured in nutrient-enriched water. Aquat. Bot. https://doi.org/10.1016/0304-3770(90)90005-6
  • 4. Akinbile, C.O., Yusoff, M.S., Ahmad Zuki, A.Z., 2012. Landfill leachate treatment using subsurface flow constructed wetland by Cyperus haspan. Waste Manag. https://doi.org/10.1016/j.wasman.2012.03.002
  • 5. Ali, Z., Mohammad, A., Riaz, Y., Quraishi, U.M., Malik, R.N., 2018. Treatment efficiency of a hybrid constructed wetland system for municipal wastewater and its suitability for crop irrigation. Int. J. Phytoremediation 20, 1152–1161.
  • 6. Alvarez‐Vazquez, H., Jefferson, B., Judd, S.J., 2004. Membrane bioreactors vs conventional biological treatment of landfill leachate: a brief review. J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. Clean Technol. 79, 1043–1049.
  • 7. Amon, J.P., Agrawal, A., Shelley, M.L., Opperman, B.C., Enright, M.P., Clemmer, N.D., Slusser, T., Lach, J., Sobolewski, T., Gruner, W., Entingh, A.C., 2007. Development of a wetland constructed for the treatment of groundwater contaminated by chlorinated ethenes. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2007.01.008
  • 8. Angaye, T.C.N., Seiyaboh, E.I., 2019. Ecotoxicological Assessment of Leachate From Municipal Solid Waste Dumpsites. J. Exp. Clin. Toxicol. 1, 31.
  • 9. Appenroth, K.J., Krech, K., Keresztes, Á., Fischer, W., Koloczek, H., 2010. Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation. Chemosphere. https://doi.org/10.1016/j.chemosphere.2009.11.007
  • 10. Ayaz, S.Ç., Akça, L., 2001. Treatment of wastewater by natural systems. Environ. Int. https://doi.org/10.1016/S0160-4120(00)00099-4
  • 11. Bachand, P.A.M., Horne, A.J., 1999. Denitrification in constructed free-water surface wetlands: II. Effects of vegetation and temperature. Ecol. Eng. https://doi.org/10.1016/S0925-8574(99)00017-8
  • 12. Bakhshoodeh, R., Alavi, N., Oldham, C., Santos, R.M., Babaei, A.A., Vymazal, J., Paydary, P., 2020. Constructed wetlands for landfill leachate treatment: A review. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2020.105725
  • 13. Barlaz, M.A., Rooker, A.P., Kjeldsen, P., Gabr, M.A., Borden, R.C., 2002. Critical evaluation of factors required to terminate the postclosure monitoring period at solid waste landfills. Environ. Sci. Technol. https://doi.org/10.1021/es011245u
  • 14. Belmont, M.A., Cantellano, E., Thompson, S., Williamson, M., Sánchez, A., Metcalfe, C.D., 2004. Treatment of domestic wastewater in a pilot-scale natural treatment system in central Mexico. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2004.11.003
  • 15. Belmont, M.A., Metcalfe, C.D., 2003. Feasibility of using ornamental plants (Zantedeschia aethiopica) in subsurface flow treatment wetlands to remove nitrogen, chemical oxygen demand and nonylphenol ethoxylate surfactants A laboratory-scale study. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2003.10.003
  • 16. Bhatt, A.H., Karanjekar, R. V., Altouqi, S., Sattler, M.L., Hossain, M.D.S., Chen, V.P., 2017. Estimating landfill leachate BOD and COD based on rainfall, ambient temperature, and waste composition: Exploration of a MARS statistical approach. Environ. Technol. Innov. https://doi.org/10.1016/j.eti.2017.03.003
  • 17. Białowiec, A., Davies, L., Albuquerque, A., Randerson, P.F., 2012. The influence of plants on nitrogen removal from landfill leachate in discontinuous batch shallow constructed wetland with recirculating subsurface horizontal flow. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2011.12.011
  • 18. Borenstein, M., Hedges, L. V., Higgins, J.P.T., Rothstein, H.R., 2009. Introduction to Meta-Analysis, Introduction to Meta-Analysis. https://doi.org/10.1002/9780470743386
  • 19. Borglin, S.E., Hazen, T.C., Oldenburg, C.M., Zawislanski, P.T., 2004. Comparison of aerobic and anaerobic biotreatment of municipal solid waste. J. Air Waste Manag. Assoc. https://doi.org/10.1080/10473289.2004.10470951
  • 20. Brisson, J., Chazarenc, F., 2009. Maximizing pollutant removal in constructed wetlands: Should we pay more attention to macrophyte species selection? Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2008.05.047
  • 21. Brix, H., 1997. Do macrophytes play a role in constructed treatment wetlands?, in: Water Science and Technology. https://doi.org/10.1016/S0273-1223(97)00047-4
  • 22. Çeçen, F., Çakıroğlu, D., 2001. Impact of landfill leachate on the co-treatment of domestic wastewater. Biotechnol. Lett. 23, 821–826.
  • 23. Ciria, M.P., Solano, M.L., Soriano, P., 2005. Role of macrophyte Typha latifolia in a constructed wetland for wastewater treatment and assessment of its potential as a biomass fuel. Biosyst. Eng. https://doi.org/10.1016/j.biosystemseng.2005.08.007
  • 24. Coleman, J., Hench, K., Garbutt, K., Sexstone, A., Bissonnette, G., Skousen, J., 2001. Treatment of domestic wastewater by three plant species in constructed wetlands. Water. Air. Soil Pollut. https://doi.org/10.1023/A:1010336703606
  • 25. Costa, A.M., Alfaia, R.G. de S.M., Campos, J.C., 2019. Landfill leachate treatment in Brazil – An overview. J. Environ. Manage. https://doi.org/10.1016/j.jenvman.2018.11.006
  • 26. Crocetti, E., 2016. Systematic Reviews With MetaAnalysis: Why, When, and How? Emerg. Adulthood 4, 3–18. https://doi.org/10.1177/2167696815617076
  • 27. Cumming, G., 2014. The New Statistics: Why and How. Psychol. Sci. https://doi.org/10.1177/0956797613504966
  • 28. Dajić, A., Mihajlović, M., Jovanović, M., Karanac, M., Stevanović, D., Jovanović, J., 2016. Landfill design: Need for improvement of water and soil protection requirements in EU Landfill Directive. Clean Technol. Environ. Policy. https://doi.org/10.1007/s10098-015-1046-2
  • 29. Dallas, S., Ho, G., 2005. Subsurface flow reedbeds using alternative media for the treatment of domestic greywater in Monteverde, Costa Rica, Central America. Water Sci. Technol. https://doi.org/10.2166/wst.2005.0358
  • 30. Denny, P., 1997. Implementation of constructed wetlands in developing countries, in: Water Science and Technology. https://doi.org/10.1016/ S0273-1223(97)00049-8
  • 31. Ellis, P.D., 2009. The Essential Guide to Effect Sizes: An Introduction to Statistical Power, Meta-Analysis and the Interpretation of Research Results. Power.
  • 32. Engelhardt, K.A.M., Ritchie, M.E., 2001. Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature. https://doi.org/10.1038/35079573
  • 33. Fadanelli, L.E.A., De Andrade Filho, A.G., Wiecheteck, G.K., Döll, M.M.R., 2019. Considerations on design and implementation parameters of domestic wastewater treatment by subsurface flow constructed wetlands. Eng. Sanit. e Ambient. https://doi.org/10.1590/s1413-41522019102334
  • 34. Fang, Z., Cao, X., Li, Xuexiao, Wang, H., Li, Xianning, 2017. Electrode and azo dye decolorization performance in microbial-fuel-cell-coupled constructed wetlands with different electrode size during long-term wastewater treatment. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2017.04.075
  • 35. Fisher, J., Stratford, C.J., Buckton, S., 2009. Variation in nutrient removal in three wetland blocks in relation to vegetation composition, inflow nutrient concentration and hydraulic loading. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2009.05.009
  • 36. Fraser, L.H., Carty, S.M., Steer, D., 2004. A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2003.11.023
  • 37. Gagnon, V., Chazarenc, F., Kõiv, M., Brisson, J., 2012. Effect of plant species on water quality at the outlet of a sludge treatment wetland. Water Res. https://doi.org/10.1016/j.watres.2012.07.007
  • 38. Gao, J., Oloibiri, V., Chys, M., Audenaert, W., Decostere, B., He, Y., Van Langenhove, H., Demeestere, K., Van Hulle, S.W.H., 2014. The present status of landfill leachate treatment and its development trend from a technological point of view. Rev. Environ. Sci. Biotechnol. https://doi.org/10.1007/s11157-014-9349-z
  • 39. Ge, Z., Feng, C., Wang, X., Zhang, J., 2016. Seasonal applicability of three vegetation constructed floating treatment wetlands for nutrient removal and harvesting strategy in urban stormwater retention ponds. Int. Biodeterior. Biodegrad. https://doi.org/10.1016/j.ibiod.2016.05.007
  • 40. Greenway, M., Woolley, A., 2001. Changes in plant biomass and nutrient removal over 3 years in a constructed wetland in Cairns, Australia, in: Water Science and Technology. https://doi.org/10.2166/wst.2001.0844
  • 41. Hand, D.J., 2012. Understanding The New Statistics: Effect Sizes, Confidence Intervals, and MetaAnalysis by Geoff Cumming. Int. Stat. Rev. https://doi.org/10.1111/j.1751-5823.2012.00187_26.x
  • 42. Haukos, D.A., Johnson, L.A., Smith, L.M., McMurry, S.T., 2016. Effectiveness of vegetation buffers surrounding playa wetlands at contaminant and sediment amelioration. J. Environ. Manage. https://doi.org/10.1016/j.jenvman.2016.07.011
  • 43. Headley, T.R., Davison, L., Huett, D.O., Müller, R., 2012. Evapotranspiration from subsurface horizontal flow wetlands planted with Phragmites australis in sub-tropical Australia. Water Res. https://doi.org/10.1016/j.watres.2011.10.042
  • 44. Hueck-Van der Plas, E.H., Hueck, H.J., 1979. The prospective assessment of environmental effects of chemicals, in: Drug Design. Elsevier, pp. 311–354.
  • 45. Huedo-Medina, T., Sanchez-Meca, J., Marin-Martinez, F., Botella, J., 2006. Assessing heterogeneity in metaanalysis: Q statistic or I2 index? Part of the Psychology Commons Recommended Citation. Psychol. Methods.
  • 46. Idris, A., Inanc, B., Hassan, M.N., 2004. Overview of waste disposal and landfills/dumps in Asian countries. J. Mater. Cycles Waste Manag. https://doi.org/10.1007/s10163-004-0117-y
  • 47. Iskander, S.M., Zhao, R., Pathak, A., Gupta, A., Pruden, A., Novak, J.T., He, Z., 2018. A review of landfill leachate induced ultraviolet quenching substances: Sources, characteristics, and treatment. Water Res. https://doi.org/10.1016/j.watres.2018.08.035
  • 48. Jin, Y.H., Cai, L., Cheng, Z.S., Cheng, H., Deng, T., Fan, Y.P., Fang, C., Huang, D., Huang, L.Q., Huang, Q., Han, Y., Hu, B., Hu, F., Li, B.H., Li, Y.R., Liang, K., Lin, L.K., Luo, L.S., Ma, J., Ma, L.L., Peng, Z.Y., Pan, Y.B., Pan, Z.Y., Ren, X.Q., Sun, H.M., Wang, Y., Wang, Yun Yun, Weng, H., Wei, C.J., Wu, D.F., Xia, J., Xiong, Y., Xu, H.B., Yao, X.M., Yuan, Y.F., Ye, T.S., Zhang, X.C., Zhang, Y.W., Zhang, Y.G., Zhang, H.M., Zhao, Y., Zhao, M.J., Zi, H., Zeng, X.T., Wang, Yong Yan, Wang, X.H., 2020. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil. Med. Res. https://doi.org/10.1186/s40779-020-0233-6
  • 49. Juliardi, A.R.N.R., Wiyanti, R.I., 2018. The test ability of fish Tawes to leachate garbage dump (TPA) Benowo, in: Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/953/1/012223
  • 50. Kadlec, R.H., Wallace, S.D., 2009. Treatment Wetlands, Second Edition, Treatment Wetlands, Second Edition. https://doi.org/10.1201/9781420012514
  • 51. Karathanasis, A.D., Potter, C.L., Coyne, M.S., 2003. Vegetation effects on fecal bacteria, BOD, and suspended solid removal in constructed wetlands treating domestic wastewater. Ecol. Eng. https://doi.org/10.1016/S0925-8574(03)00011-9
  • 52. Karpiscak, M.M., Gerba, C.P., Watt, P.M., Foster, K.E., Falabi, J.A., 1996. Multi-species plant systems for wastewater quality improvements and habitat enhancement, in: Water Science and Technology. https://doi.org/10.1016/0273-1223(96)00424-6
  • 53. Khan, S., Ahmad, I., Shah, M.T., Rehman, S., Khaliq, A., 2009. Use of constructed wetland for the removal of heavy metals from industrial wastewater. J. Environ. Manage. https://doi.org/10.1016/j.jenvman.2009.05.026
  • 54. Kickuth, R., 1977. Degradation and incorporation of nutrients from rural wastewaters by plant rhizosphere under limnic conditions. Util. manure by L. spreading 335–343.
  • 55. Kjeldsen, P., Barlaz, M.A., Rooker, A.P., Baun, A., Ledin, A., Christensen, T.H., 2002. Present and long-term composition of MSW landfill leachate: A review. Crit. Rev. Environ. Sci. Technol. https://doi.org/10.1080/10643380290813462
  • 56. Klauck, C., Rodrigues, M., Silva, L., 2015. Evaluation of phytotoxicity of municipal landfill leachate before and after biological treatment. Brazilian J. Biol. https://doi.org/10.1590/1519-6984.1813
  • 57. Knie, J.L.W., Lopes, E.W.B., 2004. Testes ecotoxicológicos: métodos, técnicas e aplicações.
  • 58. Knight, R.L., Walton, W.E., O’Meara, G.F., Reisen, W.K., Wass, R., 2003. Strategies for effective mosquito control in constructed treatment wetlands. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2003.11.001
  • 59. Kulikowska, D., Klimiuk, E., 2008. The effect of landfill age on municipal leachate composition. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2007.10.015
  • 60. Kurniawan, T.A., Lo, W.H., Chan, G.Y.S., 2006. Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate. J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2005.08.010
  • 61. Landis, W., Sofield, R., Yu, M.-H., Landis, W.G., 2003. Introduction to Environmental Toxicology: Impacts of Chemicals Upon Ecological Systems, Third Edition, CRC Press.
  • 62. Li, Y., Zhu, G., Ng, W.J., Tan, S.K., 2014. A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: Design, performance and mechanism. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2013.09.018
  • 63. Liang, M.Q., Zhang, C.F., Peng, C.L., Lai, Z.L., Chen, D.F., Chen, Z.H., 2011. Plant growth, community structure, and nutrient removal in monoculture and mixed constructed wetlands. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2010.11.018
  • 64. Luo, H., Zeng, Y., Cheng, Y., He, D., Pan, X., 2020. Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Sci. Total Environ. 703, 135468. https://doi.org/10.1016/j.scitotenv.2019.135468
  • 65. Mangkoedihardjo, S., Samudro, G. 2014. Research strategy on kenaf for phytoremediation of organic matter and metals polluted soil. Advances in Environmental Biology, 8(17), 64-67.
  • 66. Miao, L., Yang, G., Tao, T., Peng, Y., 2019. Recent advances in nitrogen removal from landfill leachate using biological treatments – A review. J. Environ. Manage. https://doi.org/10.1016/j.jenvman.2019.01.057
  • 67. Moges, A., Beyene, A., Kelbessa, E., Mereta, S.T., Ambelu, A., 2016. Development of a multimetric plant-based index of biotic integrity for assessing the ecological state of forested, urban and agricultural natural wetlands of Jimma Highlands, Ethiopia. Ecol. Indic. https://doi.org/10.1016/j.ecolind.2016.06.057
  • 68. Mohajeri, S., Aziz, H.A., Isa, M.H., Bashir, M.J.K., Mohajeri, L., Adlan, M.N., 2010. Influence of Fenton reagent oxidation on mineralization and decolorization of municipal landfill leachate. J. Environ. Sci. Heal. Part A Toxic/Hazardous Subst. Environ. Eng. https://doi.org/10.1080/10934521003648883
  • 69. Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., Altman, D., Antes, G., Atkins, D., Barbour, V., Barrowman, N., Berlin, J.A., Clark, J., Clarke, M., Cook, D., D’Amico, R., Deeks, J.J., Devereaux, P.J., Dickersin, K., Egger, M., Ernst, E., Gøtzsche, P.C., Grimshaw, J., Guyatt, G., Higgins, J., Ioannidis, J.P.A., Kleijnen, J., Lang, T., Magrini, N., McNamee, D., Moja, L., Mulrow, C., Napoli, M., Oxman, A., Pham, B., Rennie, D., Sampson, M., Schulz, K.F., Shekelle, P.G., Tovey, D., Tugwell, P., 2009. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. https://doi.org/10.1371/journal.pmed.1000097
  • 70. Mojiri, A., Aziz, H.A., Aziz, S.Q., 2013. Trends in Physical-Chemical Methods for Landfill Leachate Treatment. Int. J. Sci. Res. Environ. Sci. https://doi.org/10.12983/ijsres-2013-p016-025
  • 71. Moshiri, G.A., Brix, H., 2020. Wastewater Treatment in Constructed Wetlands: System Design, Removal Processes, and Treatment Performance, in: Constructed Wetlands for Water Quality Improvement. https://doi.org/10.1201/9781003069997-3
  • 72. Mthembu, M., Odinga, C., Swalaha, F., Bux, F., 2013. Constructed wetlands: A future alternative wastewater treatment technology. African J. Biotechnol. https://doi.org/10.5897/ajb2013.12978
  • 73. Naylor, S., Brisson, J., Labelle, M.A., Drizo, A., Comeau, Y., 2003. Treatment of freshwater fish farm effluent using constructed wetlands: The role of plants and substrate, in: Water Science and Technology. https://doi.org/10.2166/wst.2003.0324
  • 74. Nguyen, X.C., Tran, T.C.P., Hoang, V.H., Nguyen, T.P., Chang, S.W., Nguyen, D.D., Guo, W., Kumar, A., La, D.D., Bach, Q.V., 2020. Combined biochar vertical flow and free-water surface constructed wetland system for dormitory sewage treatment and reuse. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.136404
  • 75. Nivala, J., Hoos, M.B., Cross, C., Wallace, S., Parkin, G., 2007. Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2006.12.030
  • 76. Organization, W.H., 2020. Health Topics. Coronavírus. Coronavirus symptoms. World Heal. Organ. 2020a. Disponível em https//www. who. int/healthtopics/coronavirus# tab=tab_3. Acesso em 7.
  • 77. Pauliukonis, N., Schneider, R., 2001. Temporal patterns in evapotranspiration from lysimeters with three common wetland plant species in the eastern United States. Aquat. Bot. https://doi.org/10.1016/S0304-3770(01)00168-1
  • 78. Perdana, M.C., Sutanto, H.B., Prihatmo, G., 2018. Vertical Subsurface Flow (VSSF) constructed wetland for domestic wastewater treatment, in: IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/148/1/012025
  • 79. Picard, C.R., Fraser, L.H., Steer, D., 2005. The interacting effects of temperature and plant community type on nutrient removal in wetland microcosms. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2004.09.007
  • 80. Purwanta, W., 2018. Tinjauan teknologi pengolahan leachate di tempat pembuangan akhir (TPA) sampah perkotaan. J. Air Indones. https://doi.org/10.29122/jai.v3i1.2318
  • 81. Qiu, Z.C., Wang, M., Lai, W.L., He, F.H., Chen, Z.H., 2011. Plant growth and nutrient removal in constructed monoculture and mixed wetlands related to stubble attributes. Hydrobiologia. https://doi.org/10.1007/s10750-010-0530-2
  • 82. Renou, S., Givaudan, J.G., Poulain, S., Dirassouyan, F., Moulin, P., 2008. Landfill leachate treatment: Review and opportunity. J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2007.09.077
  • 83. Restrepo, J.J.B., 2013. Determinação da taxa de transferência de elementos-traço de resíduos sólidos urbanos para lixiviado.
  • 84. Samudro, G., Mangkoedihardjo, S. 2020. Mixed plant operations for phytoremediation in polluted environments – A critical review. Journal of Phytology, 12, 99-103. https://doi.org/https://doi.org/10.25081/jp.2020.v12.6454
  • 85. Samudro, H., Mangkoedihardjo, S., 2020. Greening the environment in living a new lifestyle in the COVID-19 era. Eurasian J. Biosci. 14, 3285–3290.
  • 86. Samudro, H., Mangkoedihardjo, S. 2021. Indoor phytoremediation using decorative plants: An overview of application principles. Journal of Phytology, 13, 28-32. https://doi.org/https://doi.org/10.25081/jp.2021.v13.6866
  • 87. Sandoval, L., Zamora-Castro, S.A., Vidal-Álvarez, M., Marín-Muñiz, J.L., 2019. Role of wetland plants and use of ornamental flowering plants in constructed wetlands for wastewater treatment: A review. Appl. Sci. https://doi.org/10.3390/app9040685
  • 88. Sharma, G., Priya, Brighu, U., 2014. Performance Analysis of Vertical Up-flow Constructed Wetlands for Secondary Treated Effluent. APCBEE Procedia. https://doi.org/10.1016/j.apcbee.2014.10.026
  • 89. Shelef, O., Gross, A., Rachmilevitch, S., 2013. Role of plants in a constructed wetland: current and new perspectives. Water 5, 405–419.
  • 90. Sieben, E.J.J., Collins, N.B., Mtshali, H., Venter, C.E., 2016a. The vegetation of inland wetlands with salt-tolerant vegetation in South Africa: Description, classification and explanatory environmental factors. South African J. Bot. https://doi.org/10.1016/j.sajb.2015.11.004
  • 91. Sieben, E.J.J., Nyambeni, T., Mtshali, H., Corry, F.T.J., Venter, C.E., MacKenzie, D.R., Matela, T.E., Pretorius, L., Kotze, D.C., 2016b. The herbaceous vegetation of subtropical freshwater wetlands in South Africa: Classification, description and explanatory environmental factors. South African J. Bot. https://doi.org/10.1016/j.sajb.2015.11.005
  • 92. Siedel, K., 1973. Patent: System for purification of polluted water. Washingt. DC.
  • 93. Singh V, M.A.K., 2009. Toxicity analysis and public health aspects of municipal landfill leachate: a case study of Okhla landfill, Delhi Vijaya Singh. Indian Inst. Technol. Delhi; Toxicity Anal. Public Heal. Asp. Munic., Delhi.
  • 94. Sklarz, M.Y., Gross, A., Yakirevich, A., Soares, M.I.M., 2009. A recirculating vertical flow constructed wetland for the treatment of domestic wastewater. Desalination. https://doi.org/10.1016/j.desal.2008.09.002
  • 95. Sohsalam, P., Sirianuntapiboon, S., 2008. Feasibility of using constructed wetland treatment for molasses wastewater treatment. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2007.10.033
  • 96. Stefanakis, A.I., 2020. Constructed wetlands for sustainable wastewater treatment in hot and arid climates: Opportunities, challenges and case studies in the Middle East. Water (Switzerland). https://doi.org/10.3390/W12061665
  • 97. Stefanakis, A.I., 2015. Constructed wetlands: Description and benefits of an eco-tech water treatment system, in: Impact of Water Pollution on Human Health and Environmental Sustainability. https://doi.org/10.4018/978-1-4666-9559-7.ch012
  • 98. Stefanakis, A.I., Akratos, C.S., Tsihrintzis, V.A., 2011. Effect of wastewater step-feeding on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2010.11.006
  • 99. Stottmeister, U., Wießner, A., Kuschk, P., Kappelmeyer, U., Kästner, M., Bederski, O., Müller, R.A., Moormann, H., 2003. Effects of plants and microorganisms in constructed wetlands for wastewater treatment, in: Biotechnology Advances. https://doi.org/10.1016/j.biotechadv.2003.08.010
  • 100. Tanaka, N., Ng, W.J., Jinadasa, K.B.S.N., 2011. Wetlands for tropical applications: Wastewater treatment by constructed wetlands, Wetlands for Tropical Applications: Wastewater Treatment by Constructed Wetlands. https://doi.org/10.1142/P59
  • 101. Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M.C., Schwager, M., Jeltsch, F., 2004. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. J. Biogeogr. https://doi.org/10.1046/j.0305-0270.2003.00994.x
  • 102. Thomas, D.J.L., Tyrrel, S.F., Smith, R., Farrow, S., 2009. Bioassays for the evaluation of landfill leachate toxicity. J. Toxicol. Environ. Heal. Part B Crit. Rev. https://doi.org/10.1080/10937400802545292
  • 103. Touchette, B.W., Iannacone, L.R., Turner, G.E., Frank, A.R., 2007. Drought tolerance versus drought avoidance: A comparison of plant-water relations in herbaceous wetland plants subjected to water withdrawal and repletion. Wetlands. https://doi.org/10.1672/0277-5212(2007)27[656:DTVDAA]2.0.CO;2
  • 104. Umi Raihana, A.R., Sharifah Norkhadijah, S.I., Emilia, Z.A., Praveena, S.M., 2014. Landfill leachate toxicity analysis with Orechromis mossambicus (Mozambique tilapia): a review. Int. J. Sci. Basic Appl. Res. 18, 198–216.
  • 105. Van Doremalen, N., Bushmaker, T., Morris, D.H., Holbrook, M.G., Gamble, A., Williamson, B.N., Tamin, A., Harcourt, J.L., Thornburg, N.J., Gerber, S.I., Lloyd-Smith, J.O., De Wit, E., Munster, V.J., 2020. Aerosol and surface stability of SARSCoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. https://doi.org/10.1056/NEJMc2004973
  • 106. Vymazal, J., 2013. Emergent plants used in free water surface constructed wetlands: A review. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2013.06.023
  • 107. Vymazal, J., 2011a. Plants used in constructed wetlands with horizontal subsurface flow: A review. Hydrobiologia. https://doi.org/10.1007/s10750-011-0738-9
  • 108. Vymazal, J., 2011b. Constructed wetlands for wastewater treatment: Five decades of experience. Environ. Sci. Technol. https://doi.org/10.1021/es101403q
  • 109. Vymazal, J., 2007. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2006.09.014
  • 110. Vymazal, J., 2005. Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment, in: Ecological Engineering. https://doi.org/10.1016/j.ecoleng.2005.07.010
  • 111. Vymazal, J., Kröpfelová, L., 2009. Removal of organics in constructed wetlands with horizontal sub-surface flow: A review of the field experience. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2008.08.032
  • 112. Walton, W.E., 2019. Constructed wetlands still produce mosquitoes. Proc. Pap. Mosq. Vector Control Assoc. Calif. Mon. 87, 1.
  • 113. Wang, J., Chen, Y., Huang, J., Qiao, W., Zhang, W., Yang, Q., 2009. Comparison of genetic diversity between in-situ conserved and non-conserved Oryza rufipogon populations in China. Acta Agron. Sin. 35, 1474–1482.
  • 114. Wang, X., Sun, C., Gao, S., Wang, L., Shuokui, H., 2001. Validation of germination rate and root elongation as indicator to assess phytotoxicity with Cucumis sativus. Chemosphere. https://doi.org/10.1016/S0045-6535(00)00520-8
  • 115. Wetzel, P.R., Van Der Valk, A.G., 1998. Effects of nutrient and soil moisture on competition between Carex stricta, Phalaris arundinacea, and Typha latifolia. Plant Ecol. https://doi.org/10.1023/A:1009751703827
  • 116. Wojciechowska, E., Gajewska, M., 2013. Partitioning of heavy metals in sub-surface flowtreatment wetlands receiving high-strength wastewater. Water Sci. Technol. https://doi.org/10.2166/wst.2013.283
  • 117. Wong, M.H., 1989. Toxicity test of landfill leachate using Sarotherodon mossambicus (freshwater fish). Ecotoxicol. Environ. Saf. https://doi.org/10.1016/0147-6513(89)90033-X
  • 118. Wu, F.Y., Chung, A.K.C., Tam, N.F.Y., Wong, M.H., 2012. Root exudates of wetland plants influenced by nutrient status and types of plant cultivation. Int. J. Phytoremediation. https://doi.org/10.1080/15226514.2011.604691
  • 119. Wu, H., Zhang, J., Li, C., Fan, J., Zou, Y., 2013a. Mass balance study on phosphorus removal in constructed wetland microcosms treating polluted river water. Clean Soil, Air, Water. https://doi.org/10.1002/clen.201200408
  • 120. Wu, H., Zhang, J., Wei, R., Liang, S., Li, C., Xie, H., 2013b. Nitrogen transformations and balance in constructed wetlands for slightly polluted river water treatment using different macrophytes. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-012-0996-8
  • 121. Wu, H., Zhang, Jian, Li, P., Zhang, Jinyong, Xie, H., Zhang, B., 2011. Nutrient removal in constructed microcosm wetlands for treating polluted river water in northern China. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2010.11.020
  • 122. Xiong, Y., Peng, S., Luo, Y., Xu, J., Yang, S., 2015. A paddy eco-ditch and wetland system to reduce non-point source pollution from rice-based production system while maintaining water use efficiency. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-014-3697-7
  • 123. Yalçuk, A., Ugurlu, A., 2020. Treatment of landfill leachate with laboratory scale vertical flow constructed wetlands: plant growth modeling. Int. J. Phytoremediation 22, 157–166. https://doi.org/10.1080/15226514.2019.1652562
  • 124. Yan, H., Cousins, I.T., Zhang, C., Zhou, Q., 2015. Perfluoroalkyl acids in municipal landfill leachates from China: Occurrence, fate during leachate treatment and potential impact on groundwater. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2015.03.111
  • 125. Yari, S., Moshammer, H., Fallah Asadi, A., Mosavi jarrahi, A., 2020. Side effects of using disinfectants to fight COVID-19. Asian Pacific J. Environ. Cancer. https://doi.org/10.31557/apjec.2020.3.1.9-13
  • 126. Yeh, T.Y., Chou, C.C., Pan, C.T., 2009. Heavy metal removal within pilot-scale constructed wetlands receiving river water contaminated by confined swine operations. Desalination. https://doi.org/10.1016/j.desal.2008.11.025
  • 127. Zahui, F.M., Pétémanagnanouattara, J., Messou, A., Coulibaly, L., 2018. Original Research Article Original Research Article Open Access Nutrient Removal and Balance in Vertical-Flow Constructed Wetlands Planted With Different Forage Macrophytes for Domestic Wastewater Treatment 08, 21046–21055.
  • 128. Žaltauskaitė, J., Čypaitė, A., 2008. Assessment of landfill leachate toxicity using higher plants. Environ. Res. Eng. Manag. 46.
  • 129. Zanelato, R., Bonatto, I. da C., Restrepo, J.J.B., Puerari, R.C., Matias, W.G., de Castilhos Junior, A.B., 2019. Toxicity of leachates from pilot reactors simulating a landfill with different concentrations of AgNP. Eng. Sanit. e Ambient. https://doi.org/10.1590/s1413-4152201920180239
  • 130. Zhang, C.B., Wang, J., Liu, W.L., Zhu, S.X., Ge, H.L., Chang, S.X., Chang, J., Ge, Y., 2010. Effects of plant diversity on microbial biomass and community metabolic profiles in a full-scale constructed wetland. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2009.09.010
  • 131. Zhang, Z., Rengel, Z., Meney, K., 2007a. Nutrient removal from simulated wastewater using Canna indica and Schoenoplectus validus in monoand mixed-culture in wetland microcosms. Water. Air. Soil Pollut. https://doi.org/10.1007/s11270-007-9359-3
  • 132. Zhang, Z., Rengel, Z., Meney, K., 2007b. Growth and resource allocation of Canna indica and Schoenoplectus validus as affected by interspecific competition and nutrient availability. Hydrobiologia. https://doi.org/10.1007/s10750-007-0733-3
  • 133. Zheng, Y., Wang, X., Dzakpasu, M., Zhao, Y., Ngo, H.H., Guo, W., Ge, Y., Xiong, J., 2016. Effects of interspecific competition on the growth of macrophytes and nutrient removal in constructed wetlands: A comparative assessment of free water surface and horizontal subsurface flow systems. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2016.02.008
  • 134. Zhu, H., Zhou, Q.W., Yan, B.X., Liang, Y.X., Yu, X.F., Gerchman, Y., Cheng, X.W., 2018. Influence of vegetation type and temperature on the performance of constructed wetlands for nutrient removal. Water Sci. Technol. https://doi.org/10.2166/wst.2017.556
  • 135. Zurita, F., de Anda, J., Belmont, M.A., 2006. Performance of laboratory-scale wetlands planted with tropical ornamental plants to treat domestic wastewater. Water Qual. Res. J. Canada. https://doi.org/10.2166/wqrj.2006.044
  • 136. Zurita, F., White, J.R., 2014. Comparative study of three two-Stage hybrid ecological wastewater treatment systems for producing high nutrient, reclaimed water for irrigation reuse in developing countries. Water (Switzerland). https://doi.org/10.3390/w6020213
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e98ecdd-00b4-4c16-b312-a291d84aff2d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.