PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electroless metallization of polymers

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this article was to review selected issues related to the electroless metallization of polymeric materials. Design/methodology/approach: The presented issues concerned classic electroless metallization, laser-assisted electroless metallization and electroless metallization of biodegradable polymers. Findings: The electroless metallization is most commonly used process of polymer metallization. It is possible only when the surface of a polymer product is seeded with metallic catalyst. Due to its good properties of catalysing the oxidation reaction of most reducing agents used in electroless metallization, palladium is the most commonly used catalyst in this process. Lasers can be effective tools for the preparation of polymer surface to be coated with metal layer, especially to clean, roughen, and/or induce chemical reactions on polymer surface prior to or along with metallization process. In recent years, new polymeric materials, produced from renewable resources are intensively studied and polylactide is one of such materials. An increasing interest in application of polylactide to manufacture electronic printed circuit boards and carriers was recently noticed. Research limitations/implications: A number of various metallization methods are widely reported in literature. In this article a review of only few methods is presented, which are in line with the newest trends in polymer industry and science. Practical implications: There are a number of methods of electroless metallization of polymer materials, which need to be improved to satisfy specific application conditions. For that reasons researches are leading to find better and universal metallization methods to improve overall properties of deposited metal layer. Originality/value: This article presents results of some researches related to the electroless metallization of polymeric materials.
Rocznik
Strony
67--76
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
  • Department of Materials Engineering, Kazimierz Wielki University, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
  • Department of Materials Engineering, Kazimierz Wielki University, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
autor
  • Department of Materials Engineering, Kazimierz Wielki University, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
  • Department of Materials Engineering, Kazimierz Wielki University, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
  • Department of Materials Engineering, Kazimierz Wielki University, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
Bibliografia
  • [1] R.H. Guo, S.Q. Jiang, C.W.M. Yuen, M.C.F. Ng, An alternative process for electroless copper plating on polyester fabric, Journal of Materials Science, Materials in Electronics 20 (2009) 33.
  • [2] M. Garcia-Gabaldon, V. Perez-Herranz, J. Garcia-Anton, J.L. Guinon, Electrochemical study of activating solution for electroless plating of polymers, Journal of Applied Electrochemistry 37 (2007) 1145- 1152.
  • [3] S.C. Domenech, E. Lima, V. Drago, J.C. De Lima, N.G. Borges, A.O.V. Avila, V. Soldi, Electroless plating of nickel - phosphorous on surface - modified poly(ethylene terephthalate) films, Applied Surface Science 220 (2003) 238-250.
  • [4] G.O. Mallory, Electroless plating: Fundaments and applications, Noyes Publications/William Andrew Publications, New York, 2002.
  • [5] M. Żenkiewicz, K. Moraczewski, P. Rytlewski, Autocatalytic metallization of polymeric materials, Polimery 7-8 (2011) 34-42 (in Polish).
  • [6] C. Carraro, R. Maboudian, L. Magagnin, Metallization and nanostructuring of semiconductor surfaces by galvanic displacement processes, Surface Science Reports 62 (2007) 499-525.
  • [7] K.H. Krishnan, S. John, K.N. Srinivasan, J. Praveen, M. Ganesan, P.M. Kavimani, An overall aspect of electroless Ni-P deposition - A review article, Metallurgical and Materials Transactions 37A (2006) 1917-1926.
  • [8] M. Charbonnier, M. Romand, E. Harry, M. Alami, Surface plasma functionalization of polycarbonate: Application to electroless nickel and copper plating, Journal of Applied Electrochemistry 31 (2001) 57-63.
  • [9] D. Li, K. Goodwin, C. Yang, Electroless copper deposition on aluminum - seeded ABS plastics, Journal of Materials Science 43 (2008) 7121-7131.
  • [10] A.S. Hoffman, Surface modification of polymers, Chinese Journal of Polymer Science 13 (1995) 195-203.
  • [11] J. Ge, M.P.K. Turunen, J.K. Kivilahti, Surface modification and characterization of photodefinable epoxy/copper systems, Thin Solid Films 440 (2003) 198-207.
  • [12] S. Ebnesajjad, Surface Treatment of Materials for Adhesion Bonding, William Andrew Publishing, Norwich, 2006.
  • [13] A.A. Tracton, Coatings technology handbook, CRC Press, Boca Raton, 2006
  • [14] L.A.C Teixeira., M.C. Santini, Surface conditioning of ABS for metallization without the use of chromium baths, Journal of Materials Processing Technology 170 (2005) 37-41.
  • [15] T.T. Mai, J.W.G. Schultze, Staikov, Relation between surface preconditioning and metal deposition in direct galvanic metallization of insulating surfaces, Journal of Solid State Electrochemistry 8 (2004) 201-208.
  • [16] C.L. Aronson, L.G. Beholz, D. Beloskur, B. Burland, J. Perez, New pathways for modifying the surface of high density polyethylene: chemically benign adhesion promotion and subsequent reactivity, Polymer Bulletin 53 (2005) 401-412.
  • [17] M. Charbonnier, M. Alami, M. Romand, Plasma treatment process for palladium chemisorption onto polymers before electroless deposition, Journal of Electrochemical Society 143 (1996) 472-480.
  • [18] C. Liua, N. Cui, N.M.D. Brown, B.J. Meenan, Effects of DBD plasma operating parameters on the polymer surface modification, Surface and Coating Technology 185 (2004) 311-320.
  • [19] P. Rytlewski, M. Żenkiewicz, Laser modification of polymeric materials. Part 1. Physical base of operation and criteria of choice of lasers, Polimery 52 (2007) 243-250 (in Polish).
  • [20] K. Callewaert, M. Martelé, L. Breban, K. Naessens, P. Vandaele, R. Baets, G. Geuskens, E. Schacht, Excimer laser induced patterning of polymeric surfaces, Applied Surface Science 208-209 (2003) 218-225.
  • [21] C. Lee, Y. Huang, L. Kuo, Catalytic effect of Pd nanoparticles on electroless copper deposition, Journal of Solid State Electrochemistry 11 (2007) 639-646.
  • [22] D. Chen, Y. Li, Q. Lu, J. Yin, Z. Zhu, Selective silver seeding on laser modified polyimide for electroless copper plating, Applied Surface Science 246 (2005) 167-173.
  • [23] Z. Rao, E.K. Chong, N.L. Anderson, M.G. Stevens, R. Driver, K.V. Paulose, A tin-free catalyst for electroless platinum deposition on polyethylene terephthalate, Journal of Materials Science Letters 17 (1998) 303-305.
  • [24] M. Charbonnier, M. Romand, Y. Goepfert, D. Leonard, M. Bouadi, Copper metallization of polymers by palladium - free electroless process, Surface and Coatings Technology 200 (2006) 5478-5486.
  • [25] M. Żenkiewicz, Adhesion and surface layer modification of macromolecular materials, WNT, Warszawa, 2000 (in Polish).
  • [26] S.S. Yoon, D.O. Kim, S.C. Park, Y.K. Lee, H.Y. Chae, S.B. Jung, J.D. Nam, Direct metallization of gold patterns on polyimide substrate by microcontact printing and selective surface modification, Microelectronic Engineering 85 (2008) 136-142.
  • [27] J. Li, M.J O'Keefe, T.J O'Keefe. Activation of nonmetallic substrates for metal deposition using organic solutions, Surface and Coatings Technology 205 (2011) 3134-3140.
  • [28] P. Rytlewski, Fundamentals of Laser-Polymer Interactions and Their Relevance to Polymer Metallization 205-262, in: K. Mittal, T. Bahners, Laser Surface Modification: Relevance to Adhesion, Wiley/ Scrivener, Hoboken Beverly, 2015.
  • [29] H. Frerichs, J. Stricker, D.A. Wesner, E.W. Kreutz, Laser-induced surface modification and metallization of polymers, Applied Surface Science 86 (1995) 405-410.
  • [30] H. Niino, A. Yabe, Positively charged surface potential of polymer films after excimer laser ablation: Application to selective-area electroless plating on the ablated films, Applied Physics Letters 60 (1992) 2697-2699.
  • [31] H. Niino, A. Yabe, Excimer laser polymer ablation: Formation of positively charged surfaces and its application to the metallization of polymer films, Applied Surface Science 69 (1993) 1-6.
  • [32] D.A. Wesner, R. Weichenhain, W. Pfleging, H. Horn, E.W. Kreutz, Chemical analysis of the interface between Al thin films and polymer surfaces pretreated with KrF - excimer laser radiation, Fresenius Journal of Analytical Chemistry 358 (1997) 248-250.
  • [33] S. Petit, P. Laurens, J. Amourouxb, F. Arefi-Khonsari, Excimer laser treatment of PET before plasma metallization, Applied Surface Science 168 (2000) 300-303.
  • [34] M. Charbonnier, M. Romand, Y. Goepfert, D. Léonard, F. Bessueille, M. Bouadi, Palladium (+2) reduction: A key step for the electroless Ni metallization of insulating substrates by a tin-free process, Thin Solid Films 515 (2006) 1623-1633.
  • [35] A.G. Schrott, B. Braren, E.J.M. O'Sullivan, R.F. Saraf, P. Bailey, J. Roldan, Laser-assisted seeding for electroless plating on polyimide surfaces, Journal of Electrochemical Society 142 (1995) 944-949.
  • [36] K. Kordas, S. Leppavuori, A. Uusimaki, T.F. George, L. Nanai, R. Vajtai, K. Balic, J. Bekesi, Palladium thin film deposition on polyimide by CW Ar+ laser radiation for electroless copper plating, Thin Solid Films 384 (2001) 185-188.
  • [37] M. Charbonnier, M. Romand, H. Esrom, R. Seeböck, Functionalization of polymer surfaces using excimer VUV systems and silent discharges: Application to electroless metallization, Journal of Adhesion 75 (2001) 381-404.
  • [38] G. Shafeev, W. Marine, H. Dallaporta, L. Bellard, A. Cros, Laser assisted metallization of polyphenylquinoxaline, Thin Solid Films 241 (1994) 52-56.
  • [39] P. Rytlewski, M. enkiewicz, A. Tracz, K. Moraczewski, W. Mróz, Surface morphology studies of laser irradiated and chemically metalized polyamide composites, Surface and Coatings Technology 205 (2011) 5248-5253.
  • [40] P. Rytlewski, Laser induced electroactivity of polyamide composites, Electrochimica Acta 61 (2012) 191-197.
  • [41] P. Rytlewski, Influence of glass fibre content on catalytic and adhesion properties of laser irradiated polyamide composites, Surface Engineering 29 (2013) 713-719.
  • [42] R. Auras, L.T. Lim, S.E.M. H. Selke, Tsuji (Eds.). Poly(lactid acid). Synthesis, Structures, Properties, Processing, and Applications. John Wiley & Sons, Inc., Hoboken, New Jersey, 2010.
  • [43] M. Namboothiri, N. Nair, R. John, An overview of the recent developments in polylactide (PLA) research, Bioresource Technology 101 (2010) 8493-8501.
  • [44] R. Schramm, A. Reinhardt, J. Franke, Capability of biopolymers in electronics manufacturing, Proceedings of the 35th International Spring Seminar on Electronics Technology (ISSE), Bad Aussee, Austria, 2012, 345.
  • [45] K. Moraczewski, P. Rytlewski, R. Malinowski, A. Tracz, M. Żenkiewicz, Influence of DC plasma modification on the selected properties and the geometrical surface structure of polylactide prior to autocatalytic metallization, Materials Chemistry and Physics 153 (2015) 135-144.
  • [46] K. Moraczewski, P. Rytlewski, R. Malinowski, M. Żenkiewicz: Comparison of some effects of modification of a polylactide surface layer by chemical, plasma, and laser methods, Applied Surface Science 346 (2015) 11-17.
  • [47] K. Moraczewski, R. Malinowski, P. Rytlewski, M. Żenkiewicz, Autocatalytic metallization of polylactide, Polimery 60/7-8 (2015) 492-501.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e923667-4593-45a2-b042-ea029d2541c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.