PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ocena skuteczności naprzemiennego zatłaczania wody i gazu w procesie pozyskiwania ropy naftowej ze złóż węglanowych – studium eksperymentalne

Identyfikatory
Warianty tytułu
EN
Evaluation of the effectiveness of Water Alternating Gas (WAG) injection in oil recovery from carbonate reservoirs – an experimental insight
Języki publikacji
PL
Abstrakty
PL
Biorąc pod uwagę fakt, że wydobycie z dojrzałych złóż ropy naftowej sukcesywnie spada, a nowe odkrycia nie są wystarczające, by sprostać rosnącemu zapotrzebowaniu na produkty naftowe, należy stwierdzić, że metody wspomagania wydobycia (EOR) stają się niezbędnym ogniwem światowego przemysłu naftowego. Problematyka ta jest aktualna również w ujęciu krajowym, w którym kluczowe złoża ropy naftowej wymagają niezwłocznego wprowadzenia skutecznej metody EOR. Celem niniejszej monografii jest rozpoznanie możliwości wspomagania wydobycia ropy naftowej z krajowych złóż węglanowych przy zastosowaniu naprzemiennego zatłaczania wody i gazu (WAG) z wykorzystaniem różnego typu gazów, w tym gazów ziemnych wysokozaazotowanych występujących na obszarze Niżu Polskiego. Praca ma w głównej mierze charakter eksperymentalny, choć zostały w niej również zastosowane zaawansowane metody obliczeniowe. Głównym procesem badawczym były eksperymenty wypierania ropy naftowej z rdzeni wiertniczych prowadzone z dokładnym odwzorowaniem warunków złożowych dzięki wykorzystaniu oryginalnych płynów złożowych, skały złożowej oraz zadaniu odpowiednich warunków termobarycznych. Eksperymenty te pozwoliły na ocenę skuteczności poszczególnych wariantów procesu WAG – wyróżniających się typem zatłaczanego gazu, stosunkiem wody do gazu w strumieniu zatłaczanych płynów oraz ciśnieniem tłoczenia. Przetestowano również skuteczność metody WAG w warunkach szczelinowatego ośrodka porowatego (sztuczna szczelina) oraz efektywność ograniczania mobilności gazu z wykorzystaniem przepływu pianowego (FAWAG). Na podstawie danych eksperymentalnych dokonano wstępnej oceny efektywności ekonomicznej testowanych wariantów WAG. Eksperymenty wypierania poprzedzono szeregiem badań i analiz pozwalających na ich odpowiednie zaprojektowanie, przeprowadzenie i zbilansowanie. Dla pełniejszej ewaluacji procesu WAG w węglanowym ośrodku porowatym przeprowadzono również eksperymenty uzupełniające, mające na celu rozpoznanie wpływu zatłaczanych w procesie WAG mediów na skałę zbiornikową. Ostatecznie, opierając się na wynikach prac eksperymentalnych i wykorzystując algorytm programowania genetycznego, opracowano model matematyczny pozwalający na oszacowanie wartości współczynnika odropienia na podstawie zmiennych charakteryzujących dany wariant WAG.
EN
Since production from mature oil fields is gradually declining and new discoveries are not sufficient to meet the growing demand for oil products, enhanced oil recovery is emerging as an essential component of the global oil industry. This issue is also relevant in the national context, where key oil fields require the immediate introduction of an effective EOR method. The aim of the presented dissertation is to explore the possibility of enhancing oil recovery from domestic carbonate reservoirs by a process of water alternating gas injection (WAG) using various types of gases, including high-nitrogen natural gases occurring in the Polish Lowlands. The work is mainly experimental, although advanced calculation methods have also been integrated. The primary research process involved coreflooding experiments carried out with exact reconstruction of reservoir conditions using original reservoir fluids, reservoir rock and application of appropriate thermobaric conditions. This helped assess the effectiveness of particular WAG process variants distinguished by the type of injected gas, water to gas ratio and injection pressure. The effectiveness of the WAG method for a fractured porous medium (artificial fracture) and the efficiency of reducing gas mobility using foam flow (FAWAG) were also tested. On the basis of the experimental data, an initial assessment of the WAG economic efficiency was made. The coreflooding experiments were preceded by a series of introductory studies and analyses allowing for their proper design, execution and balance. For a complete evaluation of the WAG process in the carbonate porous medium, supplementary experiments were also carried out to identify the impact of media injected in the WAG process on the reservoir rock. Finally, based on the results of the experimental work and a genetic programming algorithm, a mathematical model was developed to estimate the recovery factor using variables specific for a given WAG variant.
Rocznik
Tom
Strony
1--182
Opis fizyczny
Bibliogr. 222 poz., rys., tab., wykr.
Twórcy
Bibliografia
  • 1. Abdallah W., Buckley J., Carnegie A., Edwards J., Herald В., Graue A., Habashy Т., Seleznev N., Signer C., Hussain H., Montaron В., Ziauddin M., 2007. Fundamentals of Wettability. Oilfield Review, 192: 44-61.
  • 2. Afzali S., Rezaei N., Zendehboudi S., 2018. A comprehensive review on Enhanced Oil Recovery by Water Alternating Gas (WAG) injection. Fuel, 227: 218-246. DOI: 10.1016 /j.fuel.2018.04.015.
  • 3. Al-Hadhrami H.S., Blunt M.J., 2001. Thermally Induced Wettability Alteration To Improve Oil Recovery in Fractured Reservoirs. SPE Reservoir Evaluation & Engineering, 4(3): 179-186. DOI: 10.2118/71866-PA.
  • 4. Al-Maamari R., Buckley J.S., 2000. Asphaltene Precipitation and Alteration of Wetting: Can Wettability Change during Oil Production? SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma. DOI: 10.2118/59292-MS.
  • 5. Al-Shalabi E.W., Sepehrnoori K., Pope G.A., 2014. Modeling the Combined Effect of Injecting Low Salinity Water and Carbon Dioxide on Oil Recovery from Carbonate Cores. International Petroleum Technology Conference. DOI: 10.2523/IPTC-17862-MS.
  • 6. Al-Shamsi H.S., Abdulrahman A.S., Al-Ameri A.F., AI Katheeri A.B., Sajeel K., Al-Yaqoubi A., 2012. Immiscible WAG injection pilots performance and lessons learnt in carbonate reservoir. Onshore Abu Dhabi oil field, United Arab Emirates. Society of Petroleum Engineers - Abu Dhabi International Petroleum Exhibition and Conference 2012, ADIPEC 2012 - Sustainable Energy Growth: People, Responsibility, and Innovation, 4: 3160-3170. DOI: 10.2118/162165-ms.
  • 7. Al-Shuraiqi H.S., Muggeridge A.H., Grattoni C.A, 2003. Laboratory Investigations Of First Contact Miscible Wag Displacement: The Effects Of Wag Ratio And Flow Rate. SPE International Improved Oil Recovery Conference in Asia Pacific. DOI: 10.2118/84894-MS.
  • 8. Alkhazmi В., Farzaneh A., Sohrabi M„ Sisson А., 2018. An Experimental Investigation of WAG Injection Performance under Near-Miscible Conditions in Carbonate Rock and Comparison with Sandstone. SPE Western Regional Meeting Proceedings, California, USA. DOI: 10.2118/190053-ms.
  • 9. Alkhazmi В., Sohrabi M„ Farzaneh A., 2017. An experimental investigation of the effect of gas and water slug size and injection order on the performance of immiscible WAG injection in a mixed-wet system. Society of Petroleum Engineers - SPE Kuwait Oil and Gas Show and Conference 2017. DOI: 10.2118/187537-ms.
  • 10. Allan J., Sun S.Q., 2003. Controls on Recovery Factor in Fractured Reservoirs: Lessons Learned from 100 Fractured Fields. SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA. DOI: 10.2118/84590-MS.
  • 11. Alotaibi M.B., Azmy R., Nasr-EI-Din H.A., 2010. Wettability Challenges in Carbonate Reservoirs. SPE Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA. DOI: 10.2118/129972-MS.
  • 12. Alzayer H„ Sohrabi M„ 2018. Water-alternating-gas injection simulation - best practices. Society of Petroleum Engineers - SPE EOR Conference at Oil and Gas West Asia 2018. DOI: 10.2118/190346-ms.
  • 13. Amar M„ Zeraibi N., Redouane K., 2018. Optimization of WAG Process Using Dynamic Proxy, Genetic Algorithm and Ant Colony Optimization. Arabian Journal for Science and Engineering, 43(11): 6399-6412. DOI: 10.1007/sl3369-018-3173-7.
  • 14. American Petroleum Institute, 1998. Recommended practices for core analysis. Recommended Practice, 40.
  • 15. Anada H.R., 1980. State-of-the-art review of nitrogen and flue gas flooding in enhanced oil recovery. Final report. U.S. Departament of Energy. Science Applications, Inc., Morgan- town. DOI: 10.2172/6813742.
  • 16. Andersen M., 2009. Reservoir Production Optimization Using Genetic Algorithms and Artificial Neural Networks. Norwegian University of Science and Technology.
  • 17. Anderson W.G., 1986. Wettability Literature Survey - Part 1: Rock/Oil/Brine Interactions and the Effects of Core Handling on Wettability. Journal of Petroleum Technology, 38(10): 1125-1144. DOI: 10.2118/13932-PA.
  • 18. Permeability. Journal of Petroleum Technology, 39(11): 1453-1468. DOI: 10.2118/16323-PA.
  • 19. Andreasen A., 2020. Applied Process Simulation-Driven Oil and Gas Separation Plant Optimization Using Surrogate Modeling and Evolutionary Algorithms. ChemEngineering, 4(1), 11: 1-25. DOI: 10.3390/chemengineering4010011.
  • 20. Arabas J., 2016. Wykłady z algorytmów ewolucyjnych. Wydawnictwa Naukowo-Techniczne, Warszawa.
  • 21. Awan A.R., Teigland R., Kleppe J„ 2006. EOR Survey in the North Sea. SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, USA. DOI: 10.2118/99546-MS.
  • 22. Azin R., Mehrabi N., Osfouri S., Asgari M., 2015. Experimental Study of C02 - Saline Aquifer-Carbonate Rock Interaction during C02 Sequestration. Procedia Earth and Planetary Science, 15: 413-420. DOI: 10.1016/j.proeps.2015.08.023.
  • 23. Belazreg L., Mahmood S.M., Aulia A., 2019. Novel approach for predicting water alternating gas injection recovery factor. Journal of Petroleum Exploration and Production Technology, 9(4): 2893-2910. DOI: 10.1007/sl3202-019-0673-2.
  • 24. Bertin H.J., Apaydin O.G., Castanier L.M., Kovscek A.R., 1999. Foam Flow in Heterogeneous Porous Media: Effect of Cross Flow. SPE Journal, 4(2): 75-82. DOI: 10.2118/56009-PA.
  • 25. Birarda G.S., Dilger C.W., Mcintosh I., 1990. Re-Evaluation of the Miscible WAG Flood in the Caroline Field, Alberta. SPE Reservoir Engineering, 5(4): 453-458. DOI: 10.2118/18066-PA.
  • 26. Brown R., Fatt I., 1956. Measurements Of Fractional Wettability Of Oil Fields' Rocks By The Nuclear Magnetic Relaxation Method. Fall Meeting of the Petroleum Branch of AIME, Los Angeles, California. DOI: 10.2118/743-G.
  • 27. Buckley J.S., 1995. Asphaltene Precipitation and Crude Oil Wetting. SPE Advanced Tech¬nology Series, 3(1): 53-59. DOI: 10.2118/26675-PA.
  • 28. Buckley J.S., Liu Y., Monsterleet S., 1998. Mechanisms of Wetting Alteration by Crude Oils. SPE Journal, 3(1): 54-61. DOI: 10.2118/37230-PA.
  • 29. Cailly В., Le Tbiez P., Egermann P., Audibert A., Vidal-Gilbert S„ Longaygue X., 2005. Geological Storage of CO : A State-of-the-Art of Injection Processes and Technologies. Oil & Gas Science and Technology-Rev, 60(3).
  • 30. Cao H., Yu J., Kang L., Chen Y., 1999. The kinetic evolutionary modeling of complex systems of chemical reactions. Computers and Chemistry, 23(2): 143-151. DOI: 10.1016/S0097- 8485(99)00005-4.
  • 31. Chen Z., Ewing R.E., 1997. Comparison of Various Formulations of Three-Phase Flow in Porous Media. Journal of Computational Physics, 132(2): 362-373. DOI: 10.1006/ JCPH.1996.5641.
  • 32. Chilingarian G.V., Mazzullo S.J., Rieke H.H., Dominguez G.C., Samaniego V.F, 1992. Carbonate Reservoir Characterization : a Geologic-Engineering Analysis, Part I. Elsevier.
  • 33. Chilingarian G.V., Mazzullo S.J., Rieke H.H., Dominguez G.C., Samaniego V.F., 1996. Carbonate reservoir characterization : a geologic-engineering analysis. Part II. Elsevier.
  • 34. Choquette P.W., Pray L.C., 1974. Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates. AAPG Bulletin, 54(2): 207-250.
  • 35. Christensen J.R., Stenby E.H., Skauge A., 2001. Review of WAG Field Experience. SPE Reservoir Evaluation & Engineering, 4(2): 97-106. DOI: 10.2118/71203-PA.
  • 36. Craig EE, 1971. The reservoir engineering aspects ofwaterflooding. SPE Monograph Series, 3.
  • 37. Dohnalik M„ Zalewska J., 2009. Zastosowanie mikrotomografii rentgenowskiej do rozwiązywania zagadnień geologicznych i geofizycznych. Prace Instytutu Nafty i Gazu, 157:1-94.
  • 38. Donaldson E.C., Alam W., 2008. Wettability. Gulf Publishing Company.
  • 39. Dong M., Foraie J., Huang S., Chatzis I., 2005. Analysis of immiscible Water-Alternating-Gas (WAG) injection using micromodel tests. Journal of Canadian Petroleum Technology, 44(2): 17-24. DOI: 10.2118/05-02-01.
  • 40. Dyzmański A., Jaracz С., Karnkowski P., Orliński R., Raczkowski J., Regucki K., Sozański J., Wolwowicz R., 2004. Nafta i Gaz Podkarpacia: Zarys Historii. Instytut Nafty i Gazu, Wydawnictwo Naukowa Dumka.
  • 41. Elsharkawy A.M., Poettmann F.H., Christiansen R.L., 1996. Measuring C02 Minimum Miscibility Pressures: Slim-Tube or Rising-Bubble Method? Energy & Fuels, 10(2): 443-449. DOI: 10.1021 /ef940212f.
  • 42. Faisal A., Bisdom K., Zhumabek В., Mojaddam Zadeh A„ Rossen W.R., 2009. Injectivity and gravity segregation in WAG and SWAG enhanced oil recovery. Proceedings - SPE Annual Technical Conference and Exhibition, 2: 1286-1308. DOI: 10.2118/124197-ms.
  • 43. Farajzadeh R., Andrianov A., Zitha P.L., 2009. Foam assisted oil recovery at miscible and immiscible conditions. Kuwait International Petroleum Conference and Exhibition, Kuwait City, Kuwait, December 2009. DOI: 10.2118/126410-MS.
  • 44. Fatemi S.M., Sohrabi M., 2013. Experimental Investigation of Near-Miscible Water-Alternating-Gas Injection Performance in Water-Wet and Mixed-Wet Systems. SPE Journal, 18(1): 114-123. DOI: 10.2118/145191-PA.
  • 45. Figielska E., 2006. Algorytmy ewolucyjne i ich zastosowania. Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki, 1(1): 81-92.
  • 46. Firoozabadi A., Aziz К., 1986. Analysis and correlation of nitrogen and lean-gas miscibility pressure. SPE Reservoir Engineering, 1(6): 575-582. DOI: 10.2118/13669-PA.
  • 47. Fischer S., Liebscher A., Wandrey M., Group S., 2010. C02-brine-rock interaction - First results of long-term exposure experiments at in situ P-T conditions of the Ketzin C02 reservoir. Chemie Der Erde - Geochemistry, 70:155-164. DOI: 10.1016/j.chemer.2010.06.001.
  • 48. Fisher G.J., 1992. The Determination of Permeability and Storage Capacity: Pore Pressure Oscillation Method. International Geophysics, 51:187-211. DOI: 10.1016/S0074-6142(08)62823-5.
  • 49. Garland J., Neilson J., Laubach S.E., Whidden K.J., 2012. Advances in carbonate exploration and reservoir analysis. Geological Society, London, Special Publications, 370(1): 1-15. DOI: 10.1144/SP370.15.
  • 50. Ghafoori A., Shahbazi К., Darabi A., Soleymanzadeh A., Abedini А., 2012. The experimental investigation of nitrogen and carbon dioxide water-alternating-gas injection in a carbonate reservoir. Petroleum Science and Technology, 30(11): 1071-1081. DOI: 10.1080/10916461003681745.
  • 51. Ghahfarokhi R.B., Pennell S., Matson M., Linroth M„ 2016. Overview of C02 injection and WAG sensitivity in SACROC. SPE Improved Oil Recovery Symposium Proceedings, Tulsa, Oklahoma, USA, April 2016. DOI: 10.2118/179569-ms.
  • 52. Glaso O., 1985. Generalized Minimum Miscibility Pressure Correlation (includes associated papers 15845 and 16287). Society of Petroleum Engineers Journal, 25(6): 927-934. DOI: 10.2118/12893-pa.
  • 53. Glaso O., 1990. Miscible displacement. Recovery tests with nitrogen. SPE Reservoir Engineering, 5(1): 61-68. DOI: 10.2118/17378-pa.
  • 54. Global CCS Institute, 2015. Strategies for injection ofC02 into carbonate rocks at Hontomin: final technical report.
  • 55. Gunter W.D., Perkins E.H., Hutcheon I., 2000. Aquifer disposal of acid gases: Modelling of water-rock reactions for trapping of acid wastes. Applied Geochemistry, 15(8): 1085-1095. DOI: 10.1016/S0883-2927(99)00111-0.
  • 56. Gunter W.D., Wiwehar В., Perkins E.H., 1997. Aquifer disposal of C02-rich greenhouse gases: Extension of the time scale of experiment for C02-sequestering reactions bygeochemical modelling. Mineralogy and Petrology, 59(1-2): 121-140. DOI: 10.1007/bf01163065.
  • 57. Hamouda A.A., 1990. Insight into sulfate in high-salinity producers and selection of scale inhibitor. SPE Production Engineering, 5(4): 448-454. DOI: 10.2118/19764-PA.
  • 58. Herzog H. J., 2011. Scaling up carbon dioxide capture and storage: From megatons to gigatons. Energy Economics, 33(4): 597-604. DOI: 10.1016/j.eneco.2010.11.004.
  • 59. Hirasaki G.J., 1991. Wettability: Fundamentals and Surface Forces. SPE Formation Evaluation, 6(2): 217-226. DOI: 10.2118/17367-PA.
  • 60. Hoare G., Coll C., 2018. Effect of small/medium scale reservoir heterogeneity on the effectiveness of water, gas and water alternating gas WAG injection. SPE Europe Featured at 80th EAGE Conference and Exhibition Copenhagen, Denmark, 2018. DOI: 10.2118/190855-ms.
  • 61. Holm L.W., Josendal V.A., 1974. Mechanisms of Oil Displacement By Carbon Dioxide. Journal of Petroleum Technology, 26( 12), 1427-1438. DOI: 10.2118/4736-PA.
  • 62. Holm L.W., Josendal V.A., 1982. Effect of Oil Composition on Miscible-Type Displacement by Carbon Dioxide. Society of Petroleum Engineers Journal, 22(1): 87-98. DOI: 10.2118/8814-PA.
  • 63. Huang E.T., Holm L.W., 1988. Effect of WAG injection and rock wettability on oil recovery during C02flooding. SPE Reservoir Engineering, 3(1): 119-129. DOI: 10.2118/15491-pa.
  • 64. Hudgins D.A., Llave F.M., Chung F.Т., 1988. Nitrogen Miscible Displacement of Light Crude Oil: A Laboratory Study. SPE Reservoir Engineering, 5(01): 577-588. DOI: 10.2118/17372-pa.
  • 65. Izgec O., Demiral В., Bertin H„ Akin S„ 2008a. C02 injection into saline carbonate aquifer formations I: Laboratory investigation. Transport in Porous Media, 72(1): 1-24. DOI: 10.1007/sl 1242-007-9132-5.
  • 66. Izgec O., Demiral В., Bertin H., Akin S., 2008b. C02 injection into saline carbonate aquifer formations II: Comparison of numerical simulations to experiments. Transport in Porous Media, 73(1): 57-74. DOI: 10.1007/sll242-007-9160-l.
  • 67. Jafari M. 2014. Laboratory Study for Water, Gas and WAG Injection in Lab Scale and Core Condition. Petroleum & Coal, 56(2): 175-181.
  • 68. Janiga D., Czarnota R„ Stopa J., Wojnarowski P., 2018. Huff and puff process optimization in micro scale by coupling laboratory experiment and numerical simulation. Fuel, 224, 289-301. DOI: 10.1016/j.fuel.2018.03.085.
  • 69. Janssen M.T., Pilus R.M., Zitha P.L., 2020. A Comparative Stud of Gas Flooding and Foam-Assisted Chemical Flooding in Bentheimer Sandstones. Transport in Porous Media, 131(1): 101-134. DOI: 10.1007/sll242-018-01225-3.
  • 70. Jarrell P.M., 2002. Practical aspects of C02 flooding. SPE Monograph Series, 22, 220.
  • 71. Jensen F., Michelsen M.L., 1990. Calculation of First Contact and Multiple Contact Mini¬mum Miscibility Pressures. In Situ, 14(1): 1-17.
  • 72. Jiang H„ Nuryaningsih L., Adidharma H„ 2012. The study of timing of cyclic injections in miscible C02 WAG. SPE Western Regional Meeting, Bakersfield, California, USA, 366-373. DOI: 10.2118/153792-ms.
  • 73. Johns R.T., Yuan H., Dindoruk В., 2002. Quantification of Displacement Mechanisms in Multicomponent Gasfloods. SPE Annual Technical Conference and Exhibition, San Antonio, Texas, September 2002. DOI: 10.2118/77696-MS.
  • 74. Juanes R., Blunt M.J., 2007. Impact of viscous fingering on the prediction of optimum WAG ratio. SPE Journal, 12(4): 486-495. DOI: 10.2118/99721-PA.
  • 75. Kaminsky R., Radke С.J., 1997. Asphaltenes, Water Films, and Wettability Reversal. SPE Journal, 2(4): 485-493. DOI: 10.2118/39087-PA.
  • 76. Kampman N., Bickle M., Wigley M., Dubacq В., 2014. Fluid flow and C02-fluid-mineral interactions during C02-storage in sedimentary basins. Chemical Geology, 369: 22-50. Elsevier. DOI: 10.1016/j.chemgeo.2013.11.012.
  • 77. Karimaie H., Torsaeter O., 2010. Low IFTgas-oil gravity drainage in fractured carbonate porous media. Journal of Petroleum Science and Engineering, 70(1-2): 67-73. DOI: 10.1016/J.PETROL.2009.09.010.
  • 78. Khan M.R., Kalam S., Khan R.A., Tariq Z., Abdulraheem A., 2019. Comparative analysis of intelligent algorithms to predict the minimum miscibility pressure for hydrocarbon gas flooding. SPE Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, 2019. DOI: 10.2118/197868-ms.
  • 79. Khan M.Y., Kohata A., Patel H„ Syed F.I., Al Sowaidi A.K., 2016. Water alternating gas WAG optimization using tapered WAG technique for a giant offshore Middle East oil field. SPE Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, November 7-10, 2016. DOI: 10.2118/183181-ms.
  • 80. Kowalska S., 2013. Określanie ilościowego składu mineralnego skał zawierających minerały ilaste metodą Rietvelda. Nafta-Gaz, 69(12): 894-902.
  • 81. Koza J., 1992. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press.
  • 82. Kulkami M.M., Rao D.N., 2005. Experimental investigation of miscible and immiscible Water-Alternating-Gas (WAG) process performance. Journal of Petroleum Science and Engineering, 48(1-2): 1-20. DOI: 10.1016/j.petrol.2005.05.001.
  • 83. Kuśnierczyk J., Biały S., Szuflita S., Warnecki M., Wojnicki M., 2019. Ocena skuteczności działania inhibitorów osadzania się siarczanów baru i strontu w warunkach testu dyna¬micznego. Przemysł Chemiczny, 1(5): 93-96. DOI: 10.15199/62.2019.5.9.
  • 84. Kuśnierczyk J., Mazela W., 2019. Badanie skuteczności inhibitorów osadów nieorganicznych za pomocą testu dynamicznego symulującego warunki wydobycia i transportu ropy naftowej. Nafta-Gaz, 75(7): 388-393. DOI: 10.18668/ng.2019.07.02.
  • 85. Labastie A., 2011 .En Route: Increasing Recovery Factors: A Necessity. Journal of Petroleum Technology, 63(8): 12-13. DOI: 10.2118/0811 0012-jpt.
  • 86. Labus K., Bujok P., 2011a. Hydro geochemia sekwestracji C02 w poziomach wodonośnych - wstępne badania modelowe i eksperymentalne. Biuletyn Państwowego Instytutu Geologicznego, 445(12/1): 355-362.
  • 87. Labus K., Bujok P, 201 lb. C02 mineral sequestration mechanisms and capacity of saline aquifers of the Upper Silesian Coal Basin (Central Europe) - Modeling and experimental verification. Energy, 36(8): 4974-4982. DOI: 10.1016/j.energy.2011.05.042.
  • 88. Labus K., Bujok P., Leśniak G., Klempa M., 2011. Badania reakcji w systemie woda-skała-gaz dla celów sekwestracji C02 w poziomach wodonośnych. Wydawnictwo Politechniki Śląskiej.
  • 89. Labus K„ Suchodolska K., 2019. Analiza wrażliwości w modelowaniu hydrogeochemicznym na przykładzie systemów woda-skała-gaz. Biuletyn Państwowego Instytutu Geologicznego, 475: 117-124. DOI: 10.7306/bpig.l4.
  • 90. Labus K., Tarkowski R., Wdowin M., 2010. Assessment of CO sequestration capacity based on hydrogeochemical model of water-rock-gas interactions in the potential storage site within the Bełchatów area (Poland). Gospodarka Surowcami Mineralnymi, 26(2): 69-84.
  • 91. Lake L.W., Johns R., Rossen В., Pope G„ 2014. Fundamentals of Enhanced Oil Recovery. Society of Petroleum Engineers.
  • 92. Langaas K„ Ekrann S„ Ebeltoft E., 1996. The Impact of Using Composite Cores on Core Analysis Results. International Symposium of the Society of Core Analysts, 1-10.
  • 93. Langaas K., Ekrann S., Ebeltoft E„ 1998. A criterion for ordering individuals in a composite core. Journal of Petroleum Science and Engineering, 19(1-2): 21-32. DOI: 10.1016/ S0920-4105(97)00032-6.
  • 94. Larsen J., Bech N., Winter A., 2000. Three-Phase Immiscible WAG Injection: Micromodel Experiments and Network Models. SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, April 2000. DOI: 10.2118/59324-ms.
  • 95. Larsen J., Skauge A., 1998. Methodology for Numerical Simulation With Cycle-Dependent Relative Permeabilities. SPE Journal, 3(2): 163-173. DOI: 10.2118/38456-PA.
  • 96. Li H., Yu H., Cao N., Tian H., Cheng S., 2021. Applications of Artificial Intelligence in Oil and Gas Development. Archives of Computational Methods in Engineering, 28:937-949. DOI: 10.1007/sl 1831-020-09402-8.
  • 97. Li R.F., Yan W„ Liu S., Hirasaki G„ Miller C.A., 2010. Foam Mobility Control for Surfactant Enhanced Oil Recovery. SPE Journal, 15(4): 928-942. DOI: 10.2118/113910-PA.
  • 98. Lopez S„ Koc U., Bakker E„ Rahmani J., 2019. Optimization of Lift Gas Allocation using Evolutionary Algorithms. International Journal of Computer Applications Technology and Research. DOI: 10.7753/IJCATR0809.1003.
  • 99. Lubas J., 2006. Analiza efektywności metod eksploatacji węglanowych złóż ropy naftowej z podwójnym systemem porowatości. Nafta-Gaz, 62(9): 444-452.
  • 100. Lubaś J., 2007a. Możliwości wzrostu stopnia sczerpania karpackich złóż ropy naftowej. Wiadomości Naftowe i Gazownicze, 5(109): 4-8.
  • 101. Lubaś J., 2007b. Pionierskie doświadczenia Polski w zakresie sekwestracji dwutlenku węgla. Przegląd Geologiczny, 8: 663-665.
  • 102. Lubaś J., 2008. Pierwsza europejska przemysłowa instalacja sekwestracji C02. Nafta-Gaz, 64(1): 49-51.
  • 103. Lubaś J., 2013. O potrzebie bardziej dynamicznego wdrażania metod wspomagania wydo¬bycia ropy naftowej z krajowych złóż. Nafta-Gaz, 10: 744-750.
  • 104. Lubaś J., 2021. Czy aktualne Prawo geologiczne i górnicze promuje eksploatację złóż węglowodorów zgodnie z zasadami sztuki górniczej? Przegląd Geologiczny, 69( 1): 1 -9.
  • 105. Lubaś J., Biały E., Warnecki M., 2012. Asfalteny w problematyce wydobycia ropy naftowej. Prace Naukowe Instytutu Nafty i Gazu, nr 179: 1-121.
  • 106. Lubas J., Masłowski M., 2010. Analysis of spontaneous imbibition in the naturally fractured rocks of Main Dolomite. Nafta-Gaz, 66(6): 466-470.
  • 107. Lubaś J., Stopa J., Warnecki M., Wojnicki M., 2019. Możliwości zastosowania zaawansowanych metod wspomagania wydobycia ropy naftowej ze złóż dojrzałych. Nafta-Gaz, 75(1): 24-28. DOI: 10.18668/NG.2019.01.04.
  • 108. Lubaś J., Szott W., Wójcicki A., 2015. Wspomaganie wydobycia ropy naftowej i gazu ziemnego z polskich złóż z wykorzystaniem C02 i jego równoczesną sekwestracjq. Biuletyn Państwowego Instytutu Geologicznego, 465: 45-46.
  • 109. Luchian H., Bäutu A., Bäutu E., 2015. Genetic programming techniques with applications in the oil and gas industry. Artificial Intelligent Approaches in Petroleum Geosciences. Springer International Publishing: 101-126. DOI: 10.1007/978-3-319-16531-8_3.
  • 110. Lucia F.J., 2007. Carbonate reservoir characterization: an integrated approach. Springer. DOI: 10.1007/978-3-540-72742-2.
  • 111. Lucia F.J., Kerans C., Jennings J.W., 2003. Carbonate Reservoir Characterization. Journal of Petroleum Technology, 55(6): 70-72. DOI: 10.2118/82071-JPT.
  • 112. Luquot L., Gouze P., 2009. Experimental determination of porosity and permeability changes induced by injection ofC02 into carbonate rocks. Chemical Geology, 265(1-2): 148-159. DOI: 10.1016/j.chemgeo.2009.03.028.
  • 113. Luquot L., Rodriguez O., Gouze P., 2014. Experimental Characterization of Porosity Structure and Transport Property Changes in Limestone Undergoing Different Dissolution Regimes. Transport in Porous Media, 101(3): 507-532. DOI: 10.1007/sl 1242-013-0257-4.
  • 114. Lyons W.C., Pilsga G.J., Lorenz M.D., 2016. Standard handbook of petroleum and natural gas engineering. Gulf Professional Publishing.
  • 115. Madar J., Abonyi J., Szeifert F., 2005. Genetic Programmingfor the Identification of Nonlinear Input-Output Models. Industrial & Engineering Chemistry Research, 44(9): 3178-3186.
  • 116. Mahdiani M.R., Kooti G., 2016. The most accurate heuristic-based algorithms for estimating the oil formation volume factor. Petroleum, 2(1): 40-48. DOI: 10.1016/j.petlm.2015.12.001.
  • 117. Manrique E.J., Muci V.E., Gurfinkel M.E., 2007. EOR field experiences in carbonate res¬ervoirs in the United States. SPE Reservoir Evaluation and Engineering, 10(6): 667-686. DOI: 10.2118/100063-pa.
  • 118. Masalmeh S.K., Wei L„ Blom C., Jing X., 2014. EOR Options for Heterogeneous Carbonate Reservoirs Currently Under Waterflooding. Abu Dhabi International Petroleum Exhibition and Conference. DOI: 10.2118/171900-MS.
  • 119. McCain W.D., 1990. The properties of petroleum fluids. PennWell Books.
  • 120. McGlade С., Sondak G., Han M., 2018. Whatever happened to enhanced oil recovery? International Energy Agency.
  • 121. Michalewicz Z., 1996. Algorytmy genetyczne + struktury danych = programy ewolucyjne. Wydawnictwa Naukowo-Techniczne.
  • 122. Mohagheghian E„ James L.A., Haynes R.D., 2018. Optimization of hydrocarbon water alternating gas in the Nome field: Application of evolutionary algorithms. Fuel, 223: 86-98. DOI: 10.1016/j.fuel.2018.01.138.
  • 123. Moore C.H., Wade W.J., 2013a. Carbonate reservoirs: porosity and diagenesis in a sequence stratigraphic framework. Elsevier Science.
  • 124. Moore C.H., Wade W.J., 2013b. The Basic Nature of Carbonate Sediments and Sedimentation. Developments in Sedimentology, 67: 3-21. DOI: 10.1016/B978-0-444-53831-4.00001-X.
  • 125. Moreno J.E., Flew S„ Gurpinar O., Liu Y„ Gossuin J., 2018. Effective Use of Laboratory Measurements on Eor Planning. Offshore Technology Conference, Houston, Texas, USA. DOI: 10.4043/29057-MS.
  • 126. Muggeridge A., Cockin A., Webb K., Frampton H., Collins I., Moulds Т., Salino R, 2014. Recovery rates, enhanced oil recovery and technological limits. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 372(2006): 20120320. DOI: 10.1098/rsta.2012.0320.
  • 127. Mungan N., 1984. Carbon Dioxide Flooding - Fundamentals. Heavy Crude Oil Recovery. Springer Netherlands. DOI: 10.1007/978-94-009-6140-l_5.
  • 128. Muskat M„ 1981. Physical Principles of Oil Production. Mcgraw Hill Book Company
  • 129. Nagy S., Olajossy A., 2007. Analysis of use of low quality natural gas to improve oil recovery factor. Archives of Mining Sciences, 52(4): 553-571.
  • 130. Nagy S., Olajossy A., 2008. Economic analysis of use of the early application C02 and C02 /N2- eor technology in Poland. Archives of Mining Sciences, 53(1): 115-124.
  • 131. Nagy S., Olajossy A., Siemek J., 2006. Use of nitrogen and carbon dioxide injection in ex¬ploitation of light oil reservoirs. Acta Montanistica Slovaca Rocnik, 11(1).
  • 132. Nasery S., Hoseinpour S., Phung L., Bahadori A., 2016. Prediction of the viscosity of water-in-oil emulsions. Petroleum Science and Technology, 34(24): 1972-1977. DOI: 10.1080/10916466.2016.1233248.
  • 133. Nasralla R.A., Mahani H., van der Linde H.A., Marcelis F.H., Masalmeh S.K., Sergienko E„ Basu S., 2018. Low salinity waterfloodingfor a carbonate reservoir: Experimental evaluation and numerical interpretation. Journal of Petroleum Science and Engineering, 164:640-654. DOI: 10.1016/j.petrol.2018.01.028.
  • 134. Niińez-López V., Moskal E., 2019. Potential of C02-E0Rfar Near-Term Decarbonization. Frontiers in Climate, 1(5). DOI: 10.3389/fclim.2019.00005.
  • 135. Omole O., Osoba J.S., 1983. Carbon dioxide - Dolomite rock interaction during C02 flooding process. Annual Technical Meeting, PETSOC ATM 1983. DOI: 10.2118/83-34-17.
  • 136. Peng С., Anabaraonye B.U., Crawshaw J.P., Maitland G.C., Trusler J.P.M., 2016. Kinetics of Carbonate Mineral Dissolution in C02-Acidified Brines at Storage Reservoir Conditions. Faraday Discussions, 192. DOI: 10.1039/C6FD00048G.
  • 137. Poli R„ Langdon W.B., Mcphee N.F., Koza J.R., 2008. A Field Guide to Genetic Programming. <http://www.gp-field-guide.org.uk> (dostęp: 22.02.2020).
  • 138. Puntervold Т., Strand S„ Austad Т., 2007. Water Flooding of Carbonate Reservoirs: Effects of a Model Base and Natural Crude Oil Bases on Chalk Wettability. Energy Fuels, 21(3): 1606-1616. DOI: 10.1021/EF060624B.
  • 139. QingS., 1974. Dolomite Reservoirs: Porosity Evolution and Reservoir Characteristics. AAPG Bulletin, 79(2), 186-204. DOI: 10.1306/8D2B14EE-171E-11D7-8645000102C1865D.
  • 140. Rahimi V., Bidarigh M., Bahrami P., 2017. Experimental Study and Performance Investiga¬tion ofMiscible Water-Alternating-C02 Flooding for Enhancing Oil Recovery in the Sarvak Formation. Oil & Gas Sciences and Technology - Revue d'IFP Energies Nouvelles, 72(6): 1-12. DOI: 10.2516/ogst/20I7030.
  • 141. Rao D.N., 1999. Wettability Effects in Thermal Recovery Operations. SPE Reservoir Evaluation & Engineering, 2(5): 420-430. DOI: 10.2118/57897-PA.
  • 142. Rao D.N., 2001. Gas injection EOR - a new meaning in the new millennium. Journal of Canadian Petroleum Technology, 40(2): 11-19. DOI: 10.2118/01-02-DAS.
  • 143. Rao D.N., Girard M.G., 2002. Induced multiphase flow behaviour effects in gas injection EOR projects. Journal of Canadian Petroleum Technology, 41(7): 53-60. DOI: 10.2118/02-07-05.
  • 144. Rietveld H.M., 1969. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2(2): 65-71. DOI: 10.1107/s0021889869006558.
  • 145. Rogers J.D., Grigg R.B., 2001. A literature analysis of the WAG injectivity abnormalities in the C02 process. SPE Reservoir Evaluation and Engineering, 4(5): 375-386. DOI: 10.2118/73830-pa.
  • 146. Rushing J.A., Newsham K.E., LasswelJ P.M., Cox J.C., Blasingame T.A., 2004. Klinkenerg-Corrected Permeability Measurements in Tight Gas Sands: Steady-State Versus Unsteady-State Techniques. SPE Annual Technical Conference and Exhibition. DOI: 10.2118/89867-MS.
  • 147. Safarzadeh M.A., Motahhari S.M., 2014. Co-optimization of carbon dioxide storage and enhanced oil recovery in oil reservoirs using a multi-objective genetic algorithm (NSGA-II). Petroleum Science, 11(3): 460-468. DOI: 10.1007/sl2182-014-0362-l.
  • 148. Salathiel R.A., 1973. Oil Recovery by Surface Film Drainage In Mixed-Wettability Rocks. Journal of Petroleum Technology, 25(10): 1216-1224. DOI: 10.2118/4104-PA.
  • 149. Sales L., Pitombeira-Neto A., De Athayde Prata В., 2018. A genetic algorithm integrated with Monte Carlo simulation for the field layout design problem. Oil & Gas Science and Technology - Rev. IFP Energies nouvelles, 73(24): 1-24. DOI: 10.2516/ogst/2018017.
  • 150. Sanchez J.L., Astudillo A., Rodriguez F., Morales A., Rodriguez A., 2005. Nitrogen Injection in the Cantarell Complex: Results After Four Years of Operation. SPE Latin American and Caribbean Petroleum Engineering Conference. DOI: 10.2118/97385-MS.
  • 151. Sanchez N.L., 1999. Management of Water Alternating Gas (WAG) Injection Projects. Latin American and Caribbean Petroleum Engineering Conference. DOI: 10.2118/53714-MS.
  • 152. Schilter R.D., Yang C„ Hill M.E., Watson W.P., Almond S.W., 2014. Field-detectable scale inhibitor for severe oilfield environments. SPE Deepwater Drilling and Completions Conference 2014: 353-363. DOI: 10.2118/170296-ms.
  • 153. Sebastian H.M., Lawrence D.D., 1992. Nitrogen Minimum Miscibility Pressures. SPE/DOE Enhanced Oil Recovery Symposium. DOI: 10.2118/24134-MS.
  • 154. Semyrka R., Semyrka G., Zych I., 2008. Zmienność parametrów petrofizycznych subfacji dolomitu głównego zachodniej strefy półwyspu Grotowa w świetle badań poroży metrycznych. Geologia / Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, 34(3): 445-468.
  • 155. Seright R.S., 2001. Gel Propagation Through Fractures. SPE Production & Facilities, 16(4): 225-231. DOI: 10.2118/74602-PA.
  • 156. Sette S., Boullart L., 2001. Genetic programming: Principles and applications. Engineering Applications of Artificial Intelligence, 14(6): 727-736. DOI: 10.1016/S0952- 1976(02)00013-1.
  • 157. Seyyedi M., Mahmud H.K., Verrall M., Giwelli A., Esteban L., Ghasemiziarani M., Clennell В., 2020. Pore Structure Changes Occur During C02 Injection into Carbonate Reservoirs. Scientific Reports, 10(1): 3624. DOI: 10.1038/s41598-020-60247-4.
  • 158. Shahverdi H., Sohrabi M„ Fatemi M., Jamiolahmady M„ 2011. Three-phase relative permeability and hysteresis effect during WAG process in mixed wet and low IFT systems. Journal of Petroleum Science and Engineering, 78(3-4), 732-739. DOI: 10.1016 /j.petrol.2011.08.010.
  • 159. Shariatpanahi S.F., Strand S., Austad Т., Aksulu H„ 2012. Wettability Restoration of Limestone Cores Using Core Material From the Aqueous Zone. Petroleum Science and Technology, 30(11): 1082-1090. DOI: 10.1080/10916466.2011.569829.
  • 160. Sheng J.J., 2013a. Enhanced Oil Recovery Field Case Studies. Gulf Professional Publishing. DOI: 10.1016/C2010-0-67974-0.
  • 161. Sheng J.J., 2013b. Comparison of the effects of wettability alteration and IFT reduction on oil recovery in carbonate reservoirs. Asia-Pacific Journal of Chemical Engineering, 8(1): 154-161. DOI: 10.1002/apj.l640.
  • 162. Sheng J.J., 2013c. Review of Surfactant Enhanced Oil Recovery in Carbonate Reservoirs. Advances in Petroleum Exploration and Development, 6(1): 1-10. DOI: 10.3968 /j.aped. 1925543820130601.1582.
  • 163. Shimoyama A., Johns W.D., 1972. Formation of alkanesfromfatty acids in the presence of CaC03. Geochimica et Cosmochimica Acta, 36(1): 87-91. DOI: 10.1016/0016-7037(72)90122-6.
  • 164. Simjoo M., Dong Y., Andrianov A., Talanana M., Zitha P.L., 2013. CT scan study of immiscible foam flow in porous media for enhancing oil recovery. Industrial and Engineering Chemistry Research, 52(18): 6221-6233. DOI: 10.1021/ie300603v.
  • 165. Skauge A., Aarra M.G., 1993. Effect of Wettability on the Oil Recovery by WAG. 7th European Symposium on Improved Oil Recovery, 26-28 October 1993, Moscow, Russia.
  • 166. Skauge A., Berg E., 2014. Immiscible WAG Injection in the Fensfiord Formation of the Brage Oil Field. IOR 1997 - 9th European Symposium on Improved Oil Recovery. DOI: 10.3997/2214-4609.201406788.
  • 167. Skauge A., Solbakken J., Ormehaug P.A., Aarra M.G., 2019. Foam Generation, Propagation and Stability in Porous Medium. Transport in Porous Media. DOI: 10.1007/sl 1242-019-01250-w.
  • 168. Skauge A., Sorbie K., 2014. Status of fluid flow mechanisms for miscible and immiscible WAG. SPE EOR Conference at Oil and Gas West Asia 2014: Driving Integrated and Innovative EOR: 891-905. DOI: 10.2118/169747-ms.
  • 169. Sloss A.N., Gustafson S., 2019. 2019 Evolutionary Algorithms Review. Genetic Programming Theory & Practice. DOI: 10.48550/arXiv.l906.08870.
  • 170. Sohrabi M., Danesh A., Jamiolahmady M., 2008. Visualisation of residual oil recovery by near-miscible gas and SWAG injection using high-pressure micromodels. Transport in Porous Media, 74(2): 239-257. DOI: 10.1007/sl 1242-007-9193-5.
  • 171. Sohrabi M., Tehrani D.H., Danesh A., Henderson G.D., 2004. Visualization of oil recovery by water-alternating-gas injection using high-pressure micromodels. SPE Journal, 9(3): 290-301. DOI: 10.2118/89000-PA.
  • 172. Soleng H.H., 1999. Oil reservoir production forecasting with uncertainty estimation using genetic algorithms. Proceedings of the 1999 Congress on Evolutionary Computation, CEC 2: 1217-1223. DOI: 10.1109/CEC.1999.782574.
  • 173. Stalkup F.I., 1983a. Miscible displacement. Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers of AIME.
  • 174. Stalkup F.I., 1983b. Status of Miscible Displacement. Journal of Petroleum Technology, 35(4): 815-826. DOI: 10.2118/9992-PA.
  • 175. Standnes D.C., Austad Т., 2000. Wettability alteration in chalk: 1. Preparation of core ma¬terial and oil properties. Journal of Petroleum Science and Engineering, 28(3): 111-121. DOI: 10.1016/S0920-4105(00)00083-8.
  • 176. Stein M.H., Frey D.D., Walker R.D., Pariani G.J., 1992. Slaughter Estate Unit C02 Flood: Comparison Between Pilot and Field-Scale Performance. Journal of Petroleum Technology, 44(9): 1026-1032. DOI: 10.2118/19375-PA.
  • 177. Stosur G.J., Hite J.R., Carnahan N.F., Miller K., 2003. The Alphabet Soup oflOR, EOR and AOR: Effective Communication Requires a Definition of Terms. SPE International Improved Oil Recovery Conference in Asia Pacific. DOI: 10.2118/84908-MS.
  • 178. Such J., Szott W., 1997. Symulacyjne badania procesu przemiennego zatłaczania wody i gazu (WAG) stosowanego dla zwiększania efektywności wypierania ropy w złożu. Prace Instytutu Górnictwa Naftowego i Gazownictwa, 89: 21.
  • 179. Surguchev L.M., Korbel R„ Haugen S„ Krakstadb O.S., 1992. Screening of WAG Injection Strategies for Heterogeneous Reservoirs. European Petroleum Conference, Cannes, France, 16-18 November. DOI: 10.2118/25075-MS.
  • 180. Szott W., Miłek К., 2018a. Analysis of the enhanced oil recovery process through a bilateral well using WAG-C02 based on reservoir simulation. Part I - synthetic reservoir model. Nafta-Gaz, 74(4): 270-278. DOI: 10.18668/ng.2018.04.02.
  • 181. Szott W., Miłek К., 2018b. Analysis of the enhanced oil recovery process through a bilateral well using WAG-C02 based on reservoir simulation. Part II - real reservoir model. Nafta- Gaz, 74(7): 503-510. DOI: 10.18668/NG.2018.07.03.
  • 182. Szuflita S„ 2016. Badania laboratoryjne oddziaływania gazów kwaśnych na skałę zbiornikową w procesach sekwestracji C02. Nafta-Gaz, 72(7): 520-527. DOI: 10.18668/ NG.2016.07.04.
  • 183. Szymczak S., Shen D., Higgins R„ Gupta D.V., 2014. Minimizing environmental and economic risks with a proppant-sized solid-scale-inhibitor additive in the Bakken formation. SPE Production and Operations, 29(1): 14-20. DOI: 10.2118/159701-pa.
  • 184. Tang G.Q., Morrow N.R., 1997. Salinity, Temperature, Oil Composition, and Oil Recovery by Waterflooding. SPE Reservoir Engineering, 12(4): 269-276. DOI: 10.2118/36680-PA.
  • 185. Tarkowski R., 2005. Podziemne składowanie C02 w Polsce w głębokich strukturach geologicznych (ropo-, gazo- i wodonośnych). Wydawnictwo IGSMiE PAN.
  • 186. Tarkowski R„ Wdowin M., 2011. Petrophysical and Mineralogical Research on the Influence of C02 Injection on Mesozoic Reservoir and Caprocksfrom the Polish Lowlands. Oil & Gas Science and Technology - Rev IFP Energies Nouvelles, IFP Energies nouvelles International Conference: Deep Saline Aquifers for Geological Storage of C02 and Energy, 66( 1): 137-150. DOI: 10.2516/ogst/2011005.
  • 187. Tarkowski R., Wdowin M., Manecki M., Sawłowicz Z., Marek S., Dziewińska L., 2009. Badania oddziaływania C02 na mezozoiczne skały zbiornikowe w celu określenia ich przydatności do geologicznej sekwestracji dwutlenku węgla. E-Publikacje Nauki Polskiej. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN w Krakowie.
  • 188. Todd M.J., Thornton A.R., Wylde}., Strachan C.J., Moir G„ Goulding J.R., 2012. Phosphorus functionalised polymeric scale inhibitors, further developments and field deployment. SPE International Conference and Exhibition on Oilfield Scale 2012, Aberdeen, UK, 72-94. DOI: 10.2118/154135-ms.
  • 189. Tukur A.D., Nzerem P., Nsan N.. Okafor I.S., Gimba A., Ogolo O., Oluwaseun A., Andrew O., 2019. Well placement optimization using simulated annealing and genetic algorithm. SPE Nigeria Annual International Conference and Exhibition 2019, NAIC 2019. DOI: 10.2118/198858-MS.
  • 190. Turta А.Т., Singhai A.K., 2002. Field Foam Applications in Enhanced Oil Recovery Projects: Screening and Design Aspects. Journal of Canadian Petroleum Technology, 41(10). DOI: 10.2118/02-10-14.
  • 191. U.S. Energy Information Administration, 2020. Short-Term Energy Outlook (STEO).
  • 192. van Lingen P.P., Barzanji O.H.M., van Kruijsdijk C.P, 1996. WAG Injection to Reduce Capillary Entrapment in Small-Scale Heterogeneities. SPE Annual Technical Conference and Exhibition, Denver, Colorado. DOI: 10.2118/36662-MS.
  • 193. Velez-Langs O., 2005. Genetic algorithms in oil industry: An overview. Journal of Petroleum Science and Engineering, 47(1-2): 15-22. DOI: 10.1016/j.petrol.2004.11.006.
  • 194. Verma M.K., 2015. Fundamentals of Carbon Dioxide-Enhanced Oil Recovery (C02-E0R) - A Supporting Document of the Assessment Methodology for Hydrocarbon Recovery Using C02-E0R Associated with Carbon Sequestration. U.S. Geological Survey Open-File Report, 19. DOI: 10.3133/ofr20151071.
  • 195. Vishnyakov V., Suleimanov В., Salmanov A., Zeynalov E., 2019. Primer on Enhanced Oil Recovery (1st ed.). Gulf Professional Publishing.
  • 196. Wang Y., Orr F.M., 1998. Calculation of Minimum Miscibility Pressure. SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA. DOI: 10.2118/39683-MS.
  • 197. Warnecki M., 2010. Rozpuszczalność C02 i rodzimych gazów ziemnych w solance złożowej. Nafta-Gaz, 66(1): 19-26.
  • 198. Warnecki M., Szuflita S., Kuśnierczyk J„ Wojnicki M„ Biały S., 2018. Analiza skuteczności wypierania ropy naftowej pochodzącej ze złoża BMB z długich rdzeni mieszaniną wody studziennej i złożowej zmodyfikowaną wyselekcjonowanymi polimerami. Praca badawcza na zlecenie PGNiG S.A., Archiwum Instytutu Nafty i Gazu - Państwowego Instytutu Badawczego, Kraków.
  • 199. Wawersik W.R., Rudnicki J.W., Dove P., Harris ]., Logan J.M., Pyrak-Nolte L., Orr F.M., Ortoleva P.J., Richter F., Warpinski N.R., Wilson J.L., Wong T.F., 2001. Terrestrial sequestration of C02: An assessment of research needs. Advances in Geophysics, 43:97-177. DOI: 10.1016/s0065-2687(01)80003-0.
  • 200. Wei В., 2016. Advances in Polymer Flooding. [W:] El-Amin M.F. (ed.). Viscoelastic and Viscoplastic Materials. DOI: 10.5772/64069.
  • 201. WHO,2018. Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum.
  • 202. Wojnicki M., 2017a. Wspomaganie wydobycia ropy metodą naprzemiennego zatłaczania wody i gazu (WAG). Wiadomości Naftowe i Gazownicze, 8: 4-8.
  • 203. Wojnicki M., 2017b. Experimental investigations of oil displacement using the WAG method with carbon dioxide. Nafta-Gaz, 73(11): 864-870. DOI: 10.18668/NG.2017.11.06.
  • 204. Wojnicki M„ 2020. Naprzemienne zatłaczanie wody i gazu (WAG) wspomagane pianą (FAWAG) jako efektywna metoda EOR w złożach szczelinowatych i heterogenicznych. Nafta-Gaz, 5: 311-321. DOI: 10.18668/NG.2020.05.04.
  • 205. Wojnicki M., Kuśnierczyk J., Szuflita S., Warnecki M., 2021. Ocena efektywności ekonomicznej procesu WAG na podstawie danych eksperymentalnych dla jednego z krajowych złóż ropy naftowej. Nafta-Gaz, 77(2): 75-81. DOI: 10.18668/NG.2021.02.02.
  • 206. Wojnicki M„ Lubaś J., Gawroński M„ Szuflita S., Kuśnierczyk J., Warnecki M., 2022. An Experimental Investigation of WAG Injection in a Carbonate Reservoir and Prediction of the Recovery Factor Using Genetic Programming. Energies, 15(6): 2127. DOI: 10.3390/enl5062127.
  • 207. Wojnicki M., Lubaś J., Warnecki M., Kuśnierczyk J., Szuflita S., 2020. Experimental Studies of Immiscible High-Nitrogen Natural Gas WAG Injection Efficiency in Mixed-Wet Carbonate Reservoir. Energies, 13(9): 2346. DOI: 10.3390/enl3092346.
  • 208. Wojnicki M., Warnecki M., 2018. Pobór próbek węglowodorowych płynów złożowych do badań właściwości fazowych - PVT. Wiadomości Naftowe i Gazownicze, 1(231): 4-7.
  • 209. Wojnicki M., Warnecki M., Kuśnierczyk J., Szuflita S., 2017. Ocena skuteczności wypierania ropy metodą WAG z wykorzystaniem gazów kwaśnych. Praca Statutowa INiG - PIB, 1887/KB/17,60.
  • 210. Wojnicki M., Warnecki M., Kuśnierczyk}., Szuflita S., 2018. Analizy PVT jako skuteczne narzędzie w rękach inżyniera naftowego. Część 1: laboratoryjne badania PVT. Nafta-Gaz, 7: 535-542. DOI: 10.18668/NG.2018.07.07.
  • 211. Xie X., Morrow N.R., Buckley J.S., 2002. Contact angle hysteresis and the stability of wetting changes induced by adsorption from crude oil. Journal of Petroleum Science and Engineering, 33(1-3): 147-159. DOI: 10.1016/S0920-4105(01)00182-6.
  • 212. Xu Т., Apps J.A., Pruess K., 2004. Numerical simulation of C02 disposal by mineral trapping in deep aquifers. Applied Geochemistry, 19(6): 917-936. DOI: 10.1016/j.apgeo- chem.2003.11.003.
  • 213. Yan W., Miller C.A., Hirasaki G.J., 2006. Foam sweep in fractures for enhanced oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 282-283: 348-359. DOI: 10.1016/J.COLSURFA.2006.02.067.
  • 214. Yellig W.F., Metcalfe R.S., 1980. Determination and Prediction of C02 Minimum Misci- bility Pressures (includes associated paper 8876). Journal of Petroleum Technology, 32( 1): 160-168. DOI: 10.2118/7477-PA.
  • 215. Yu L., Buckley J.S., 1997. Evolution of Wetting Alteration by Adsorption From Crude Oil. SPE Formation Evaluation, 12(1): 5-12. DOI: 10.2118/28970-PA.
  • 216. Zalewska J., Dohnalik M., 2009. Wizualizacja przestrzeni porowej skał z wykorzystaniem mikrotomografii rentgenowskiej. Geologia, 35(2/1): 625-632.
  • 217. Zekri A.Y., Almehaideb R„ 2003. Microbial and Waterflooding of Fractured Carbonate Rocks: An Experimental Approach. Petroleum Science and Technology, 21(1 -2): 315-331. DOI: 10.1081/LFT-120016951.
  • 218. Zhang P., Austad Т., 2006. Wettability and oil recovery from carbonates: Effects of temperature and potential determining ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 279(1-3), 179-187. DOI: 10.1016/J.COLSURFA.2006.01.009.
  • 219. Zhu H., Xu Т., Tian H., Feng G., Yang Z., Zhou В., 2009. Understanding of Long-Term C02-Brine-Rock Geochemical Reactions Using Numerical Modeling and Natural Analogue Study. Geofluids, Article ID 1426061, 1-16. DOI: 10.1155/2019/1426061.
  • 220. Zolfaghari H., Zebarjadi A., Shahrokhi O., Ghazanfari M.H., 2013. An Experimental Study of C02-low Salinity Water Alternating Gas Injection in Sandstone Heavy Oil Reser¬voirs. Iranian Journal of Oil & Gas Science and Technology, 2(3): 37-47. DOI: 10.22050/ IJOGST.2013.3643.
  • Akty prawne i normatywne
  • 1. NACE, 2005. NACE 31105- Dynamie Scale Inhibitor Evaluation Apparatus and Procedures in Oil and Gas Production.
  • 2. Rozporządzenie Ministra Zdrowia w sprawie jakości wody przeznaczonej do spożycia przez ludzi z dnia 7 grudnia 2017 r. (Dz.U. z 2017 r. poz. 2294).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e8a0fa7-2934-4719-8c7f-a9c5ae58e74a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.