PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methods of manipulation and image acquisition of natural products on the example of cereal grains

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to growing requirements concerning quality of products in food industry, it becomes important to introduce new, efficient, objective and repeatable automated methods of quality inspection. Agricultural products, such as cereal grains, are particularly difficult for automated inspection. This paper presents the results of experimental studies on the development of automated methods of manipulation and image acquisition of cereals, which can be used in machine vision systems for quality evaluation. Experimental studies were carried out on samples of brewing barley. The proof-of-concept evaluation of several methods was performed, on the basis of which the solution was chosen, based on the interaction of the screw and vibration feeders and bilateral image acquisition on moving transparent surface.
Rocznik
Strony
339--353
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
autor
  • Wroclaw University of Technology, Faculty of Mechanical Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocaw, Poland
  • Wroclaw University of Technology, Faculty of Mechanical Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocaw, Poland
autor
  • Wroclaw University of Technology, Faculty of Mechanical Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocaw, Poland
Bibliografia
  • [1] Brosnan, T. and Sun, D. W. (2002) Inspection and grading of agricultural and food products by computer vision systems—a review. Computers and Electronics in Agriculture 36 (2–3), 193–213. Canty, T. M., O’Brien, P. J., Marks, C. P. and Owen, R. E. (2009) Granular product inspection device. US Patent 10/740,244, April 14.
  • [2] Chen, Y. R., Chao, K. and Kim, M. S. (2002) Machine vision technology for agricultural applications. Computers and Electronics in Agriculture 36 (2–3), 173–191.
  • [3] Choudhary, R., Paliwal, J. and Jayas, D. S. (2008) Classification of cereal grains using wavelet, morphological, colour, and textural features of nontouching kernel images. Biosystems Engineering 99 (3), 330–337.
  • [4] Hug, A. (2013) Sorting and inspection apparatus and method with determination of product velocity. US Patent 14/129,333, January 3.
  • [5] Kajiura, T., Oita, N., Abe, J. and Sugiyama, S. (1989) Granule inspection apparatus. US Patent 07/089,302, May 16.
  • [6] Majumdar, S. and Jayas, D. S. (2000) Classification of cereal grains using machine vision: IV. Combined morphology, color, and texture models. Transactions of the ASAE 43 (6), 1689.
  • [7] Mebatsion, H. K., Paliwal, J. and Jayas, D. S. (2013) Automatic classification of non-touching cereal grains in digital images using limited morphological and color features. Computers and Electronics in Agriculture 90, 99–105.
  • [8] Paliwal, J., Visen, N. S. and Jayas, D. S. (2001) Evaluation of neural network architectures for cereal grain classification using morphological features. Journal of Agricultural Engineering Research 79(4), 361–370.
  • [9] Polish Standard PN-R-74110 (1998) Barley - Test methods. Reiner, J., Mrzyglod, M. and Tryba, D. (2008) Laser measurement of throbing and flatness of the circural saw disks (in Polish). Napędy i Sterowanie 10 (6), 39–42.
  • [10] Reiner, J. and Mrzyglod, M. (2010) Selected machine vision methods for inspection of metal parts (in Polish). Zeszyty Naukowe Politechniki Poznanskiej. Budowa Maszyn i Zarzadzanie Produkcja¸ 14, 71–76.
  • [11] Reiner, J., Mrzyglod, M., Zmywaczyk, J., Trzyna, M. and Jaremek, H. (2014) Quality inspection of termochromic liquid crystals calibration for medical imaging (in Polish). Mechanik 87 (8-9), 326–336.
  • [12] Szczypinski, P. M., Klepaczko, A. and Zapotoczny, P. (2015) Identifying barley varieties by computer vision. Computers and Electronics in Agriculture 110, 1–8.
  • [13] Weiss, M. and Armstrong, B. (2007) Seed tray for digital image analysis of grain and the like. US Patent 10/217,264, February 27.
  • [14] Zapotoczny, P. (2011) Discrimination of wheat grain varieties using image analysis and neural networks. Part I. Single kernel texture. Journal of Cereal Science 54 (1), 60–68.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e87eedd-e27e-4f06-ac38-61ff3987fa98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.