PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studies on the Effect of Nano-MnO2 in HTPB-based Composite Propellant Formulations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Various propellant compositions were prepared incorporating fully characterized nano-sized manganese dioxide, from 0.25 wt.% to 1.0 wt.%, in HTPB/AP/Al-based composite propellant formulations having 86 wt.% of solid loading, and its effects on the viscosity build-up, thermal, mechanical and ballistic properties were studied. The findings revealed that on increasing the percentage of nano-MnO2 in the composition, there was an increase in the end of mix viscosity, the modulus and tensile strength, while the elongation decreased accordingly. The data on the thermal properties revealed a reduction in the decomposition temperature of ammonium perchlorate (AP) as well as of the formulations based on it. The data on the ballistic properties revealed that there is an enhancement in the burning rate from 6.11 mm/s (reference composition) to 7.54 mm/s at 6.86 MPa (a 23% enhancement in the burning rate) and an increase in the pressure exponent from 0.35 (reference composition) to 0.42 with 1.0 wt.% nano-MnO2.
Rocznik
Strony
589--604
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • High Energy Materials Research Laboratory, Sutarwadi, Pune-411021, India
autor
  • High Energy Materials Research Laboratory, Sutarwadi, Pune-411021, India
  • High Energy Materials Research Laboratory, Sutarwadi, Pune-411021, India
autor
  • High Energy Materials Research Laboratory, Sutarwadi, Pune-411021, India
autor
  • High Energy Materials Research Laboratory, Sutarwadi, Pune-411021, India
Bibliografia
  • [1] Dey, A.; Sikder, A. K.; Talwar, M. B.; Chattopadhyay, S. Towards New Directions in Oxidizers-Energetic Fillers for Composite Propellants: An Overview. Cent. Eur. J. Energ. Mater. 2015, 12(2): 377-399.
  • [2] Jain, S.; Mehilal; Singh, P. P.; Bhattacharya, B. Evaluation of Potassium Perchlorate as Burning Rate Modifier in Composite Propellant Formulations. Cent. Eur. J. Energ. Mater. 2016, 13(1): 231-245.
  • [3] Oberth, A. E.; Bruenner, R. S. Polyurethane-based Propellant. In: Propellant, Manufacturing Hazard and Testing (Boyers, C.; Klager, K., Eds.), American Chemical Society, Washington D.C. 1969, pp. 84-121; ISBN 9780841200890.
  • [4] Yaman, H.; Celik, V.; Degrimenci, E. Experimental Investigation of Factors Affecting the Burning Rate of Solid Rocket Propellant. Fuel 2014, 115: 794-803.
  • [5] Boldyrev, V. V. Thermal Decomposition of Ammonium Perchlorate. Thermochim. Acta 2006, 443: 1-36.
  • [6] Kohga, M. Burning Characteristic and Thermo Chemical Behaviour of AP/HTPB Composite Propellant Using Coarse and Fine AP Particle. Propellants Explos. Pyrotech. 2011, 36: 57.
  • [7] Kishore, K.; Prasad, G. A Review on Decomposition/Deflagration of Oxidizer and Binder in Composite Solid Propellant. Def. Sci. J. 1979, 20: 39-54.
  • [8] Jacobs, P. M. V.; Whithead, H. M. Decomposition and Combustion of Ammonium Perchlorate. Chem. Rev. 1969, 4: 551-590.
  • [9] Kishore, K.; Verneker, V. R. P.; Sunitha, M. R. Effect of Catalyst Concentration on Burning Rate of Composite Solid Propellants. AIAA J. 1977, 15: 1649-1651.
  • [10] Kishore, K.; Sunitha, M. R. Mechanism of Catalytic Activity of Transition Metal Oxide on Solid Propellant Burning Rate. Combust. Flame 1978, 33: 311-314.
  • [11] Gore, G. M.; Tipare, K. R.; Bhatewara, R. G.; Prasad, U. S.; Gupta, M.; Mane, S. R. Evaluation of Ferrocene Derivatives as Burn Rate Modifiers in AP/HTPB-based Composite Propellants. Def. Sci. J. 1999, 49(2): 151-158.
  • [12] Ghosh, K.; Behera, S.; Kumar, A.; Padale, B. G.; Deshpande, D. G.; Kumar, A.; Gupta, M. Studies on Aluminized, High Burning Rate, Butacene® Based, Composite Propellants. Cent. Eur. J. Energ. Mater. 2014, 11(3): 323-333.
  • [13] Pang, W.; DeLuca, T. L.; Fan, X.; Maggi, F.; Xu, H.; Xie, W.; Shi, X. Effects of Different Nano-sized Metal Oxide Catalysts on the Properties of Composite Solid Propellants. Combust. Sci. Technol. 2016, 188(3): 315-328.
  • [14] Kshirsagar, D. R.; Jain, S.; Jawalkar, S. N.; Naik, N. H.; Pawar, S.; Maurya, M. Evaluation of Nano-Co3O4 in HTPB-based Composite Propellant Formulations. Propellants Explos. Pyrotech. 2016, 41(2): 304-311.
  • [15] Kshirsagar, D.; Kurva, R.; Dhabbe, K.; Jawale, L.; Sudhir Khire, V.; Mehilal Effect of Nano Cr2O3 in HTPB/AP/Al Based Composite Propellant Formulations. Def. Sci. J. 2016, 66(2): 100-106.
  • [16] Chen, S.; Zhu, J.; Huang, H.; Zeng, G.; Nie, F.; Wang, X. Facile Solvothermal Synthesis of Graphene-MnOOH Nanocomposites. J. Solid State Chem. 2010, 183(11): 2552-2557.
  • [17] Li, N.; Geng, Z.; Cao, M.; Ren, L.; Zhao, X.; Liu, B.; Tian, Y.; Hu, C. Well-dispersed Ultrafine Mn3O4 Nanoparticles on Graphene as a Promising Catalyst for the Thermal Decomposition of Ammonium Perchlorate. Carbon 2013, 54: 124-132.
  • [18] Han, A., Liao, J., Ye, M., Li, Y., Peng, X. Preparation of Nano-MnFe2O4 and Its Catalytic Performance of Thermal Decomposition of Ammonium Perchlorate. Chinese Journal of Chemical Engineering 2011, 19(6): 1047-1051.
  • [19] Chandru, R. A.; Patra, S.; Oommen, C.; Munichandraiah, N.; Raghunandan, B. N. Exceptional Activity of Mesoporous β-MnO2 in the Catalytic Thermal Sensitization of Ammonium Perchlorate. J. Mater. Chem. 2012, 22(14): 6536-6538.
  • [20] Naya, T.; Kohga, M. Burning Characteristics of Ammonium Nitrate-based Composite Propellants Supplemented with MnO2. Propellants Explos. Pyrotech. 2013, 38(1): 87-94.
  • [21] Kohga, M.; Naya, T. Thermal Decomposition Behaviors and Burning Characteristics of AN/RDX-based Composite Propellants Supplemented with MnO2 and Fe2O3. J. Energ. Mater. 2015, 33(4): 288-304.
  • [22] Kawamura, K. Influence of Copper Oxide Catalysts on the Burning Rate of a Composite Propellant. Kogyo Kayaku 1989, 50(5): 415-424.
  • [23] Kishore, K.; Verneker, V. R. P.; Sunitha, M. R. Action of Transition Metal Oxides on Composite Solid Propellants. AIAA J. 1980, 18(11): 1404-1405.
  • [24] Singh, G.; Kapoor, I. P. S.; Dubey, S.; Siril, P. F. Preparation, Characterization and Catalytic Activity of Transition Metal Oxide Nanocrystals, Journal of Scientific Conference Proceeding, 2009, 1: 11-17.
  • [25] Jawale, L. S.; Dey, C.; Mehilal; Gupta, M.; Bhattacharya, B. Effect of Experiment Environment on Calorimetric Value of Composite Solid Propellants. Def. Sci. J. 2013, 63(5): 467-472
  • [26] Kshirsagar, D. R.; Sudhir; Mehilal; Singh, P. P.; Bhattacharya, B. Evaluation of Nano-Fe3O4 in Composite Propellant Formulation. Int. J. Energ. Mater. Chem. Propul. 2013, 12(6): 463-474.
  • [27] Zheng, D.; Sun, S.; Fan, W.; Yu, H.; Fan, C.; Cao, G.; Yin, Z.; Song, X. One Step Preparation of Single Crystalline β-MnO2 Nanotubes. J. Phys. Chem., B 2005, 109: 16439-16443.
  • [28] Gupta, G.; Jawale, L.; Mehilal; Bhattacharya, B. Various Methods for the Determination of the Burning Rates of Solid Propellants – an Overview. Cent. Eur. J. Energ. Mater. 2015, 12(3): 593-620.
  • [29] Mehilal; Jawalkar, S. N.; Kurva, R.; Nandagopal, S.; Dombe, G.; Singh, P. P.; Bhattacharya, B. Studies on High Burning Rate Composite Propellant Formulations Using TATB as Pressure Index Suppressant. Cent. Eur. J. Energ. Mater. 2012, 9:237-249.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e849627-8b98-44c4-9d77-0a1483754192
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.