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Abstract. Let s ∈ (0, 1) and N > 2s. In this paper, we consider the following class of
nonlocal semipositone problems:

(−∆)su = g(x)fa(u) in RN , u > 0 in RN ,

where the weight g ∈ L1(RN ) ∩ L∞(RN ) is positive, a > 0 is a parameter, and
fa ∈ C(R) is strictly negative on (−∞, 0]. For fa having subcritical growth and weaker
Ambrosetti–Rabinowitz type nonlinearity, we prove that the above problem admits a moun-
tain pass solution ua, provided a is near zero. To obtain the positivity of ua, we establish
a Brezis–Kato type uniform estimate of (ua) in Lr(RN ) for every r ∈ [ 2N

N−2s
, ∞].
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solutions.
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1. INTRODUCTION

In this present paper, we deal with a class of nonlocal semipositone problems on RN .
Precisely, for s ∈ (0, 1) and N > 2s, we consider the following nonlocal semilinear
equation:

(−∆)su = g(x)fa(u) in RN , (SP)

where the weight g ∈ L1(RN ) ∩ L∞(RN ) is positive, a > 0 is a parameter, and
fa ∈ C(R) has the following form:

fa(t) =
{

f(t) − a, if t ≥ 0,

−a, if t ≤ 0,
with f ∈ C(R+) satisfying f(0) = 0.
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Moreover, f satisfies the following hypothesis:

(f1) lim
t→0

f(t)
t

= 0, lim
t→∞

f(t)
t

= ∞, and lim
t→∞

f(t)
tγ−1 ≤ C(f) for some γ ∈ (2, 2∗

s) and
C(f) > 0,

(f2) there exists R > 0 such that f(t)
t

is increasing for t > R,

where 2∗
s = 2N

N−2s is the critical fractional exponent. The linear operator (−∆)s is
called the fractional Laplacian defined as

(−∆)su(x) := 2 lim
ϵ→0+

∫

RN \Bϵ(x)

u(x) − u(y)
|x − y|N+2s

dy, x ∈ RN ,

where Bϵ(x) denotes the ball of radius ϵ and centred at x. Due to the presence of the
strictly negative quantity on the R.H.S. of (SP) in the regions where u ≤ 0 and certain
portion of u > 0, the problem (SP) is called semipositone in the literature. Semipositone
problems have applications in mathematical physics, biology, engineering etc. More
preciously, in the logistic equation, mechanical systems, suspension bridges, population
model, etc.; see for example [25, 28].

In the local case, the semipositone problems were first observed by Brown and
Shivaji in [7] while studying the perturbed bifurcation problem −∆u = λ(u − u3) − ϵ
in Ω, u > 0 in Ω, u = 0 on ∂Ω, where λ, ϵ > 0 and Ω is a bounded domain. In this work,
the authors used the sub-super solution method to get positive solutions. Observe
that u = 1 is a supersolution for this problem since the R.H.S. of the equation is
negative at u = 1. To obtain an appropriate positive subsolution, the authors used the
anti-maximum principle due to Clément and Peletier. Later, many authors studied
the following semipositone problem on a bounded domain Ω:

−∆u = λf(u) in Ω, u > 0 in Ω, and u = 0 on ∂Ω, (1.1)

where λ > 0, f : R+ → R is continuous, increasing and f(0) < 0. For example, we refer
[10–12, 14, 17] where various growth conditions and nonlinearities on the function f
are imposed to find the existence of positive solutions for (1.1). In [1], Alves et al.
considered the following semipositone problem:

−∆u = g(x)fa(u) in RN , (1.2)

with fa(t) = f(t)−a for t > 0, fa(t) = −a(t+1) for t ∈ [−1, 0], and fa(t) = 0 for t ≤ −1,
where the function f ∈ C(R+) satisfies f(0) = 0, is locally Lipschitz, has superlinear
growth conditions and Ambrosetti–Rabinowitz (see [2]) type nonlinearities. Meanwhile,
the weight function g is assumed to be positive, radial, lies in L1(RN ) ∩ L∞(RN ) and
satisfies the following bound:

|x|N−2
∫

RN

g(|y|)
|x − y|N−2 dy ≤ C(g), for x ∈ RN \ {0}, where C(g) > 0. (1.3)
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The authors used the regularity estimate by Brezis and Kato in [6] and the Reisz
potential for the Laplace operator to establish uniform boundedness of mountain pass
solutions of (1.2) in L∞(RN ), with respect to the parameter a near zero. The authors
then obtained a positive solution of (1.2) using this uniform regularity estimate,
the strong maximum principle, and the condition (1.3). For more results related to
semipositone problems, we refer [9, 16] and the references therein.

Now, we shift our discussion to the nonlocal case. In the past years, a significant
amount of attention has been given to the study of fractional laplacian due to its
numerous applications in mathematical physics, engineering and related fields. For
example, in linear drift-diffusion equations [15], image denoising [21], quasi-geostrophic
flows [3], and bound-state problems [26], to name a few. Several authors recently studied
the nonlocal semipositone problems on a bounded domain Ω. In [18], the authors
considered a multiparameter fractional semipositone problem (−∆)su = λ(uq −1)+µur

in Ω, u > 0 in Ω, u = 0 in RN \ Ω, where λ, µ > 0 are parameters, N > 2s, and
0 < q < 1 < r ≤ 2∗

s − 1. For a certain range of λ and µ, the authors proved the
existence of a positive solution for this problem. Their proof relies on the construction
of a positive subsolution. Later, in [23], the authors studied the nonlocal nonlinear
semipositone problem (−∆)s

pu = λf(u) in Ω, u = 0 in RN \ Ω, where (−∆)s
p is the

fractional p-Laplace operator, λ > 0, f ∈ C(R) has superlinear, subcritical growth and
f(s) = 0 for s ≤ −1. The authors obtained at least one positive solution provided the
parameter λ is sufficiently small. Their proof uses regularity results up to the boundary
of Ω and Hopf’s Lemma for (−∆)s

p. To our knowledge, nonlocal semipositone problems
on an unbounded domain have not been studied yet.

In this paper, we consider the nonlocal counterpart of −∆u = g(x)(f(u)−a) in RN ,
u > 0 in RN (studied in [1]). On the weight function g, we impose a nonlocal analogue
of (1.3). With subcritical, superlinear and without Ambrosetti–Rabinowitz growth
conditions (see [2]) for f , our primary concern is to establish the existence of positive
solution to (SP), depending on the parameter a. The techniques used in [18, 23] to get
positive solution are not adoptable in this context. Our procedure to find non-negative
solution for (SP) is motivated by [1], where the uniform regularity estimate (with
respect to a) of solutions in L∞(RN ) plays a major role. In [20, Proposition 5.1.1],
for g ∈ L1(RN ) ∩ L∞(RN ), and |f(x, t)| ≤ C(1 + |t|p); 1 ≤ p ≤ 2∗

s − 1, the authors
proved that every non-negative solution to the problem (−∆)su = g(x)f(x, u) in RN

is bounded. However, this regularity result is not applicable in our situation. Also, the
Brezis–Kato type regularity estimate for weak solution to (SP) is unknown.

We consider the homogeneous fractional Sobolev space Ḣs(RN ) (introduced in [20])
defined as

Ḣs(RN ) := closure of C1
c (RN ) with respect to ∥·∥Ḣs(RN ),

where ∥·∥Ḣs(RN ) := [·]s,2 + ∥·∥L2∗
s (RN ), and

[u]s,2 :=




∫∫

RN ×RN

(u(x) − u(y))2

|x − y|N+2s
dxdy




1
2

,
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is the Gagliardo seminorm. A function u ∈ Ḣs(RN ) is a weak solution of (SP) if the
following identity holds:

∫∫

RN ×RN

(u(x) − u(y)(ϕ(x) − ϕ(y))
|x − y|N+2s

dxdy =
∫

RN

g(x)fa(u)ϕ(x) dx, ∀ ϕ ∈ Ḣs(RN ).

We say a weak solution u is a mountain pass solution of (SP) if it is a critical point of
C1 energy functional associated with (SP), which satisfies the mountain pass geometry
and a weaker Palais–Smale condition (see Proposition 2.5 and [27, Theorem 2.1]), and
moreover, the value of the energy functional at u possesses a min-max characterization
(see (3.1)).

Theorem 1.1. Let s ∈ (0, 1) and N > 2s. Assume that f satisfies (f1) and (f2).
Let g ∈ L1(RN ) ∩ L∞(RN ) be positive. Then there exists a1 > 0 such that for each
a ∈ (0, a1), (SP) admits a mountain pass solution. Moreover, there exist a2 ∈ (0, a1)
and C > 0, such that ∥ua∥Ḣs(RN ) ≤ C, for all a ∈ (0, a2).

From the above theorem, observe that the mountain pass solutions of (SP) are
uniformly bounded in L2∗

s (RN ). In the following theorem, we prove a Brezis–Kato type
regularity result which says the uniform boundedness of the mountain pass solutions
in Lr(RN ) with r ≥ 2∗

s, under an additional growth assumption on f near infinity:

(f̃1) lim
t→∞

f(t)
t2∗

s−1 = 0.

Theorem 1.2. Let s ∈ (0, 1) and N > 2s. Let f, g, a2 be as given in Theorem 1.1.
In addition, assume that f satisfies (f̃1). Then for r ∈ [2∗

s, ∞] and a ∈ (0, a2),
ua ∈ Lr(RN ) ∩ C(RN ). Moreover, there exists C(r, N, s, f, g) > 0 such that
∥ua∥Lr(RN ) ≤ C, for all a ∈ (0, a2).

Next, we state the positivity of the solutions to (SP). To state the result, we invoke
further hypothesis on f and g:

(f3) f is locally Lipschitz,

(g1) |x|N−2s

∫

RN

g(y)
|x − y|N−2s

dy ≤ C(g), where x ∈ RN \ {0} and C(g) > 0.

Theorem 1.3. Let s ∈ (0, 1) and N > 2s. Let f, g, a2 be as given in Theorem 1.2.
Then the following hold:

(i) There exists a3 ∈ (0, a2) such that for every a ∈ (0, a3), ua ≥ 0 on RN .
(ii) In addition, if f satisfies (f3) and g satisfies (g1), then ua > 0 on RN .

Let us briefly discuss our approach to prove the above theorems. The existence of
mountain pass solution is based on variational methods. To establish the Brezis–Kato
type regularity result for (SP), we use the Moser iteration technique and the uni-
form boundedness of the mountain pass solutions in Ḣs(RN ) along with the growth
assumption (f̃1). With this regularity result and using the Riesz representation for
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the operator (−∆)s ([29, Theorem 5]), we show that a sequence of mountain pass
solutions uniformly converges to a positive function in C(RN ) near a = 0. In the
end, we conclude the positivity of the solutions by using the properties (f3) and (g1).
At this point, it is clear that the range of a, the growth of f near infinity, and the
behaviour of the weight function g are essential for the existence of positive solutions.
One example of f , g satisfying all these properties is demonstrated in Example 4.1.

We organize the rest of this paper as follows. In Section 2, we obtain some
embeddings of Ḣs(RN ) and set up a variational framework associated with (SP).
Section 3 contains the proof of the existence and regularity of the mountain pass
solutions to (SP). We establish the positivity of the solution in Section 4.

2. EMBEDDINGS OF Ḣs(RN ) AND THE VARIATIONAL SETTINGS

In the first part of this section, we discuss compact embeddings of Ḣs(RN ) into specific
Lebesgue spaces and weighted Lebesgue spaces. Using these embeddings, in the second
part, we prove qualitative properties of the energy functional associated with (SP).
In the rest of this paper, we denote C as a generic positive constant, and denote the
norm ∥·∥Lp(RN ) by ∥·∥p.

2.1. EMBEDDINGS OF Ḣs(RN )

Recall that, the homogeneous fractional Sobolev space Ḣs(RN ) is the closure of C1
c (RN )

with respect to [·]s,2 + ∥·∥2∗
s
. In view of [19, Theorem 1.1], Ḣs(RN ) has the following

representation:

Ḣs(RN ) :=
{

u : RN → R : u is measurable, [u]s,2 + ∥u∥2∗
s

< ∞
}

.

Henceforth, Ḣs(RN ) ↪→ L2∗
s (RN ). Moreover, by [8, Theorem 2.2.1] and using the

density of C1
c (RN ), we get

∥u∥2∗
s

≤ C(N, s)[u]s,2, ∀ u ∈ Ḣs(RN ). (2.1)

The above inequality infers that [·]s,2 is an equivalent norm in Ḣs(RN ), i.e., there exists
C1 depending on N, s such that [u]s,2 ≤ ∥u∥Ḣs(RN ) ≤ C1[u]s,2 holds for all u ∈ Ḣs(RN ).
In the following proposition, we prove that Ḣs(RN ) is compactly embedded into spaces
of locally integrable functions.

Proposition 2.1. Let N > 2s. Then Ḣs(RN ) ↪→ Lq
loc(RN ) compactly for every

q ∈ (1, 2∗
s).

Proof. Combining the embeddings Ḣs(RN ) ↪→ L2∗
s (RN ) and L

2∗
s

loc(RN ) ↪→ Lq
loc(RN )

with q ∈ (1, 2∗
s), it is evident that Ḣs(RN ) ↪→ Lq

loc(RN ) for q ∈ (1, 2∗
s). First, we show

that Ḣs(RN ) is compactly embedded into L2
loc(RN ). Let (un) be a bounded sequence

in Ḣs(RN ), and K ⊂ RN be a compact set. Then there exists M1 > 0 such that
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∥un∥L2(K) ≤ C∥un∥Ḣs(RN ) ≤ M1 for every n ∈ N. Consequently, the sequence (un

∣∣
K

)
is bounded in L2(K). Further, using [5, Lemma A.1] for every n ∈ N, we have

sup
|h|>0

∫

RN

(un(x + h) − un(x))2

|h|2s
dx ≤ C(N)[un]2s,2. (2.2)

The boundedness of (un) in Ḣs(RN ) and (2.2) confirm that for all n ∈ N,
∫

RN

(un(x + h) − un(x))2 dx → 0

as |h| → 0. Now by applying the Riesz–Fréchet–Kolmogorov compactness theorem on
(un

∣∣
K

) ⊂ L2(K), we conclude (un

∣∣
K

) is relatively compact. Hence, it has a convergent
subsequence in L2(K). Therefore, Ḣs(RN ) is compactly embedded into L2

loc(RN ).
For q ∈ (1, 2), using L2

loc(RN ) ↪→ Lq
loc(RN ) we directly get the compact embeddings

of Ḣs(RN ) into Lq
loc(RN ). Next, we consider q ∈ (2, 2∗

s). In this case, we express
q = 2t + (1 − t)2∗

s , where t = 2∗
s−q

2∗
s−2 ∈ (0, 1). Using Ḣs(RN ) ↪→ Lq

loc(RN ), the sequence
(un

∣∣
K

) is bounded in Lq(K). Applying the Hölder inequality with the conjugate pair
( 1

t , 1
1−t ) and (2.2) we obtain the following estimate for every |h| > 0 and n ∈ N:

∫

RN

|un(x + h) − un(x)|q dx

≤



∫

RN

(un(x + h) − un(x))2 dx




t

∫

RN

|un(x + h) − un(x)|2∗
s dx




1−t

≤ C(N) (|h|s[un]s,2)2t ∥un∥2∗
s(1−t)

2∗
s

≤ C(N)|h|2st∥un∥q

Ḣs(RN ).

Again the boundedness of (un) in Ḣs(RN ), and the Riesz–Fréchet-Kolmogorov com-
pactness theorem confirm a convergent subsequence of (un

∣∣
K

) in Lq(K). Therefore,
Ḣs(RN ) is compactly embedded into Lq

loc(RN ) for q ∈ (2, 2∗
s) as well. This completes

the proof.

We now prove the compact embeddings of Ḣs(RN ) into weighted Lebesgue spaces.

Proposition 2.2. Let N > 2s and q ∈ [2, 2∗
s). Let p be the conjugate exponent of 2∗

s

q ,
and g ∈ Lp(RN ). Then the embedding Ḣs(RN ) ↪→ Lq(RN , |g|) is compact.

Proof. Let un ⇀ u in Ḣs(RN ). We need to show un → u in Lq(RN , |g|). Set

L = sup{∥un − u∥q
2∗

s
: n ∈ N}.
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Clearly, L is finite from the boundedness of (un) in Ḣs(RN ). Let ϵ > 0 be given.
Since Cc(RN ) is dense in Lp(RN ), we choose gϵ ∈ Cc(RN ) such that ∥g − gϵ∥p < ϵ

2L .
We estimate ∫

RN

|g||un − u|q ≤
∫

RN

|g − gϵ||un − u|q +
∫

RN

|gϵ||un − u|q. (2.3)

Using the Hölder inequality with conjugate pair (p,
2∗

s

q ) we estimate the first integral
of the above inequality as

∫

RN

|g − gϵ||un − u|q ≤ ∥g − gϵ∥p∥un − u∥q
2∗

s
<

ϵ

2 . (2.4)

Suppose K is the support of gϵ. Using the compact embeddings of Ḣs(RN ) into
Lq

loc(RN ) (Proposition 2.1), there exists n1 ∈ N such that
∫

RN

|gϵ||un − u|q =
∫

K

|gϵ||un − u|q <
ϵ

2 , ∀ n ≥ n1.

Therefore, from (2.3) and (2.4) we obtain
∫

RN

|g||un − u|q < ϵ, ∀ n ≥ n1.

Thus un → u in Lq(RN , |g|).

2.2. THE VARIATIONAL SETTINGS

For the existence of a solution of (SP), this subsection sets up a suitable functional
framework. In the following remark, we identify some bounds (upper and lower) for
fa and its primitive Fa, defined as Fa(t) =

∫ t

0 fa(τ)dτ .
Remark 2.3. (i) Let ϵ > 0 and γ ∈ (2, 2∗

s]. Using subcritical growth on f and
behaviour of f near zero (see (f1)), there exists t1(ϵ) > 0 such that f(t) < ϵt, for
0 < t < t1, and f(t) ≤ Ctγ−1 for t ≥ t1, where C = C(f, t1(ϵ)). Hence f(t) ≤ ϵt+Ctγ−1

for t ∈ R+, and

|fa(t)| ≤ ϵ|t| + C|t|γ−1 − a and |Fa(t)| ≤ ϵt2 + C|t|γ + a|t| for t ∈ R, (2.5)

where C = C(f, t1(ϵ)). Again using the subcritical growth on f , f(t) ≤ C(f)tγ−1 for
t > t2. The continuity of f infers that f(t) ≤ C on [0, t2]. Hence for a ∈ (0, ã), we get

|fa(t)| ≤ C(1 + |t|γ−1) and |Fa(t)| ≤ C(|t| + |t|γ) for t ∈ R, (2.6)

where C = C(f, t2, ã). Using (f̃1), there exists t3(ϵ) > 0 so that f(t) ≤ ϵt2∗
s−1 for all

t > t3. Hence for a ∈ (0, ã), we also obtain

|fa(t)| ≤ C + ϵ|t|2∗
s−1 for t ∈ R, (2.7)

where C = C(ϵ, t3(ϵ), ã).
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(ii) Let M > 0. Since f is superlinear (see (f1)), there exists a constant C = C(M)
such that f(t) > Mt−C, for every t ∈ R+. From the superlinearity of f , it also follows
that limt→∞

F (t)
t2 = ∞, and hence F (t) > Mt2 − C(M) for every t ∈ R+. Accordingly,

fa(t) > Mt − (C + a) and Fa(t) = F (t) − at > Mt2 − (at + C) for t ∈ R+,
(2.8)

where C = C(M).

For g ∈ L1(RN ) ∩ L∞(RN ) and a ≥ 0, we consider the following functionals
on Ḣs(RN ):

Na(u) =
∫

RN

gFa(u) and Ia(u) = 1
2 [u]2s,2 − Na(u).

Using the upper bound of Fa (Remark 2.3) it follows that Na and Ia are well-defined.
Moreover, one can also verify that Na, Ia ∈ C1(Ḣs(RN ),R) and N ′

a(u), I ′
a(u) for

u ∈ Ḣs(RN ) are given by

N ′
a(u)(v) =

∫

RN

gfa(u)v,

I ′
a(u)(v) =

∫∫

RN ×RN

(u(x) − u(y)(v(x) − v(y))
|x − y|N+2s

dxdy − N ′
a(u)(v),

(2.9)

where v ∈ Ḣs(RN ). Every critical point of Ia corresponds to a solution of (SP). In the
following proposition, we prove the compactness of Na and N ′

a.

Proposition 2.4. Let N > 2s and γ ∈ (2, 2∗
s). Let g ∈ L1(RN ) ∩ L∞(RN ). Assume

that f satisfies (f1). Then the following hold for a ≥ 0:

(i) The functional Na is compact on Ḣs(RN ). Moreover, if un ⇀ u in Ḣs(RN ) and
an → a in R+, then Nan

(un) → Na(u).
(ii) The map N ′

a : Ḣs(RN ) → (Ḣs(RN ))′ is compact. Moreover, if un ⇀ u in Ḣs(RN )
and an → a in R+, then N ′

an
(un)(v) → N ′

a(u)(v) for every v ∈ Ḣs(RN ).

Proof. (i) Let un ⇀ u in Ḣs(RN ). We show that Na(un) → Na(u). The idea of the
proof is similar to Proposition 2.2. Set

L = sup
{

∥un∥γ
2∗

s
+ ∥u∥γ

2∗
s

+ ∥un∥2∗
s

+ ∥u∥2∗
s

: n ∈ N
}

,

which is finite since (un) is bounded in Ḣs(RN ). Let ϵ > 0 be given. Let p be the
conjugate exponent of 2∗

s

γ . Using the density of Cc(RN ) into Lp(RN ) and L
N
2s (RN ),

we take gϵ ∈ Cc(RN ) satisfying

|gϵ| < |g| and ∥g − gϵ∥p + ∥g − gϵ∥
1
2
N
2s

<
ϵ

L
.
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For a ≥ 0, we write

|Na(un) − Na(u)| ≤
∫

RN

|g − gϵ||Fa(un) − Fa(u)| +
∫

RN

|gϵ||Fa(un) − Fa(u)|. (2.10)

Using (2.6) and (2.4), the first integral of (2.10) can be estimated as
∫

RN

|g − gϵ||Fa(un) − Fa(u)|

≤
∫

RN

|g − gϵ| (|Fa(un)| + |Fa(u)|)

≤ C

∫

RN

|g − gϵ|
(
|un|γ + |u|γ + |un| + |u|

)

≤ C
(

∥g − gϵ∥p

(
∥un∥γ

2∗
s

+ ∥u∥γ
2∗

s

)

+
(

∥g − gϵ∥ N
2s

∥g − gϵ∥1

) 1
2
(

∥un∥2∗
s

+ ∥u∥2∗
s

))

≤ C
ϵ

L

(
∥un∥γ

2∗
s

+ ∥u∥γ
2∗

s
+ ∥un∥2∗

s
+ ∥u∥2∗

s

)

< Cϵ,

(2.11)

where C = C(f, a). Next, we show that the second integral of (2.10) converges to zero
as n → ∞. Let K be the support of gϵ. Since Ḣs(RN ) is compactly embedded into
Lγ

loc(RN ) (Proposition 2.1), un → u in Lγ(K). In particular, up to a subsequence,
un(x) → u(x) a.e. in K. From the continuity of Fa, Fa(un(x)) → Fa(u(x)) a.e. in K.
Further, since |Fa(un)| ≤ C(|un|γ + |un|), and

∫
K

|un|γ →
∫

K
|u|γ ,

∫
K

|un| →
∫

K
|u|,

using the generalized dominated convergence theorem, Fa(un) → Fa(u) in L1(K).
Thus

∫

RN

|gϵ||Fa(un) − Fa(u)| ≤ ∥gϵ∥∞

∫

K

|Fa(un) − Fa(u)| → 0, as n → ∞.

Therefore, from (2.10), Na(un) → Na(u), as n → ∞. Now for a sequence (an), we write

|Nan(un) − Na(u)| ≤
∫

RN

|g||Fan(un) − Fa(un)| +
∫

RN

|g||Fa(un) − Fa(u)|. (2.12)

By the compactness of Na, the second integral of (2.12) converges to zero. Further,
by noting that Fan

(un) − Fa(un) = (a − an)un, the first integral of (2.12) can be
estimated as

∫

RN

|g||Fan(un) − Fa(un)| ≤ |an − a|
∫

RN

|g||un| ≤ |an − a|∥g∥
1
2
1



∫

RN

|g|u2
n




1
2

. (2.13)
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Thus, combining (2.12) and (2.13), and using Proposition 2.2 we get Nan
(un) → Na(u),

as n → ∞.
(ii) The compactness of N ′

a similarly follows using the splitting arguments shown
above. The proof of the convergence of (N ′

an
(un)(v)) holds similarly.

Now we prove that the energy functional Ia satisfies all the conditions of the
mountain pass theorem. It is worth mentioning that Ia may not satisfy the Palais–Smale
condition due to the weaker Ambrosetti–Rabinowitz type nonlinearities for f in (f1).
Nevertheless, in the first two parts of the following proposition, Ia satisfies a weaker
Palais–Smale condition, called the Cerami condition introduced in [13].

Proposition 2.5. Let N > 2s and γ ∈ (2, 2∗
s). Let f satisfies (f1) and (f2). Let

g ∈ L1(RN ) ∩ L∞(RN ) be positive. Then the following hold:

(i) Let (un) be a bounded sequence in Ḣs(RN ) such that Ia(un) → c in R and
I ′

a(un) → 0 in (Ḣs(RN ))′. Then (un) has a convergent subsequence in Ḣs(RN ).
(ii) For any c ∈ R, there exist η, β, ρ > 0 such that ∥I ′

a(u)∥[u]s,2 ≥ β for u ∈
I−1

a ([c − η, c + η]) with [u]s,2 ≥ ρ.
(iii) There exist ρ > 0, β = β(ρ) > 0, and a1 = a1(ρ) > 0 such that if a ∈ (0, a1), then

Ia(u) ≥ β for every u ∈ Ḣs(RN ) satisfying [u]s,2 = ρ.
(iv) There exists ũ ∈ Ḣs(RN ) with [ũ]s,2 > ρ such that Ia(ũ) < 0.

Proof. (i) By the reflexivity, up to a subsequence un ⇀ u in Ḣs(RN ). We consider
the functional J(v) = [v]s,2, for v ∈ Ḣs(RN ). From (2.9),

J ′(un)(un − u) = I ′
a(un)(un − u) + N ′

a(un)(un − u).

By the hypothesis,

|⟨I ′
a(un), un − u⟩| ≤ ∥I ′

a(un)∥[un − u]s,2 → 0, as n → ∞.

Moreover, since N ′
a is compact (Proposition 2.4),

N ′
a(un)(un − u) → 0, as n → ∞

Therefore,
J ′(un)(un − u) → 0, as n → ∞.

Further, since un ⇀ u in Ḣs(RN ) and J ∈ C1(Ḣs(RN ),R), we also have

J ′(u)(un − u) → 0.

Therefore,
[un − u]2s,2 = J ′(un)(un − u) − J ′(u)(un − u) → 0,

as required.
(ii) Our proof adapts the arguments given in [4, Proposition 3.6]. On the contrary,

assume that (un) is a sequence in Ḣs(RN ) satisfying

Ia(un) → c, [un]s,2 → ∞, and ∥I ′
a(un)∥[un]s,2 → 0, as n → ∞. (2.14)
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Set wn = un

[un]s,2
. Then [wn]s,2 = 1, and by the reflexivity, up to a subsequence, wn ⇀ w

in Ḣs(RN ).
Step 1. This step shows that w+ = 0 a.e. in RN . We consider the set

Ω =
{

x ∈ RN : w(x) > 0
}

.

On the contrary, we assume |Ω| > 0. Using (2.14),

[un]2s,2 − N ′
a(un)(un) = I ′

a(un)(un) → 0.

Hence for each n ∈ N, we have

1 = 1
[un]2s,2



∫

RN

gfa(un)un + ϵn


 , (2.15)

where ϵn → 0 as n → ∞. From the compactness of Ḣs(RN ) ↪→ L2
loc(RN ) and by the

Egorov theorem, there exists Ω1 ⊂ Ω with |Ω1| > 0 such that (wn) converges to w
uniformly on Ω1. Thus there exists n1 ∈ N such that for n ≥ n1, wn ≥ 0 and hence
un ≥ 0 a.e. on Ω1. This implies that, for every n ≥ n1, Ω1 ⊂ Ω+

n , where

Ω+
n :=

{
x ∈ RN : un(x) ≥ 0

}
.

From the definition of fa, fa(un)un = −aun ≥ 0 on RN \ Ω+
n . Therefore, using (2.15)

and using the lower bound of fa in (2.8), for all n ≥ n1 we obtain

1 ≥ 1
[un]2s,2





∫

Ω+
n

gfa(un)un + ϵn





≥ M

∫

Ω+
n

g
u2

n

[un]2s,2
− (CM + a)

[un]s,2

∫

Ω+
n

g
un

[un]s,2
+ ϵn

[un]2s,2

≥ M

∫

Ω1

gw2
n − (CM + a)

[un]s,2

∫

Ω+
n

gwn + ϵn

[un]2s,2
.

(2.16)

Further, ∫

Ω1

gw2
n →

∫

Ω1

gw2

(by Proposition 2.2) and
∫

Ω+
n

gwn ≤
∫

RN

gwn ≤ C(N, s)
(

∥g∥1∥g∥ N
2s

) 1
2

.
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We take the limit as n → ∞ in (2.16) and using [un]s,2 → ∞, to obtain

1 ≥ M

∫

Ω1

gw2, for arbitrarily large M > 0,

which is a contradiction. Thus, |Ω| = 0.
Step 2. For a fixed n ∈ N, we set

mn := sup {Ia(twn) : 0 ≤ t ≤ [un]s,2} .

Since the map t 7→ Ia(twn) is continuous on [0, [un]s,2], there exists tn ∈ [0, [un]s,2]
such that mn = Ia(tnwn). First, we claim that mn → ∞, as n → ∞. Since the
sequence (un) is unbounded, there exists n2 ∈ N so that for n ≥ n2, [un]s,2 ≥ M .
Hence by definition, mn ≥ Ia(Mwn). Using the compactness of Na (Proposition 2.4)
and |Ω| = 0 (Step 1), we get

lim
n→∞

Ia(Mwn) = M2

2 − lim
n→∞

∫

RN

gFa(Mwn)

= M2

2 −
∫

RN

gFa(Mw) = M2

2 + aM

∫

Ωc

gw.

Since the quantity M2

2 + aM
∫

Ωc gw is sufficiently large, we conclude that
Ia(Mwn) → ∞, as n → ∞, and hence the claim holds. Next, for each n ∈ N,

Ia(tnwn) − Ia(un) =
t2
n − [un]2s,2

2 +
∫

RN

g (Fa(un) − Fa(tnwn)) . (2.17)

Set sn = tn

[un]s,2
. Then sn ∈ [0, 1] and snun = tnwn. Clearly,

Fa(un(x)) − Fa(snun(x)) = 0

whenever un(x) = 0. If un(x) ̸= 0, then for R > 0 given in (f2) we apply
[4, Proposition 3.3] to get

Fa(un(x)) − Fa(snun(x)) ≤ 1 − s2
n

2 un(x)fa(un(x)) + C(R).

Therefore, (2.17) yields

Ia(tnwn) − Ia(un) ≤ 1 − s2
n

2


−[un]2s,2 +

∫

RN

gunfa(un)


+ C(R)∥g∥1

= s2
n − 1

2 I ′
a(un)(un) + C(R)∥g∥1.
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Hence, in view of (2.14), the sequence (Ia(tnwn) − Ia(un)) is bounded. On the other
hand, individually (Ia(un)) is bounded (see (2.14)) and (Ia(tnwn)) is unbounded,
resulting in a contradiction. Therefore, such an unbounded sequence (un) in (2.14)
does not exist.

(iii) Let ϵ > 0 be such that ϵBg∥g∥ N
2s

< 1
2 , where Bg is the best constant of (2.1).

Then using (2.5) and the embeddings Ḣs(RN ) ↪→ Lγ(RN , |g|) (Proposition 2.2) we get

Ia(u) ≥ [u]2s,2
2 − ϵ

∫

RN

gu2 − C

∫

RN

g|u|γ − a

∫

RN

g|u|

≥ [u]2s,2

(
1
2 − ϵBg∥g∥ N

2s
− C[u]γ−2

s,2

)
− aC[u]s,2,

(2.18)

where C = C(f, g, N, s). Taking [u]s,2 = ρ, Ia(u) ≥ A(ρ) − aCρ, where A(ρ) =
Cρ2(1 − C1ργ−2) for some constants C, C1 independent of a. Let ρ1 be the first
nontrivial zero of A. For ρ < ρ1, fix a1 ∈ (0, A(ρ)

Cρ ) and β = A(ρ) − a1Cρ. Therefore,
using (2.18), Ia(u) ≥ β for every a ∈ (0, a1).

(iv) We consider ϕ ∈ C2(RN ), ϕ ≥ 0, and [ϕ]s,2 = 1. For M, t > 0, using (2.8) we get

Fa(tϕ) > M(tϕ)2 − (atϕ + C(M)).

Hence

Ia(tϕ) ≤ t2


1

2 − M

∫

RN

gϕ2


+ at

∫

RN

gϕ + C(M)∥g∥1.

Choose M >
(
2
∫
RN gϕ2)−1. Then Ia(tϕ) → −∞, as t → ∞, i.e., there exists t1 > ρ

so that Ia(tϕ) < 0 for t > t1. Thus ũ = tϕ with t > t1 is the required function.

3. EXISTENCE, UNIFORM BOUNDEDNESS,
AND REGULARITY OF THE SOLUTIONS

In this section, we study the existence of solutions to (SP) and their various properties.
This section contains the proof of Theorem 1.1–1.2.

Proof of Theorem 1.1. Recall a1, β, ũ as given in (iii) and (iv) of Proposition 2.5. For
a ∈ (0, a1) using Proposition 2.5 and the fact that [·]s,2 is an equivalent norm in
Ḣs(RN ) (from (2.1)), we observe that all the properties of the mountain pass theorem
in [27, Theorem 2.1] are verified. Therefore, applying [27, Theorem 2.1] there exists
ua ∈ Ḣs(RN ) satisfying

Ia(ua) = inf
γ∈Γũ

max
s∈[0,1]

Ia(γ(s)) ≥ β and I ′
a(ua) = 0, (3.1)

where
Γũ :=

{
γ ∈ C([0, 1], Ḣs(RN )) : γ(0) = 0 and γ(1) = ũ

}
.
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Thus, ua is a nontrivial solution of (SP). First, we show that the set {Ia(ua) : a ∈
(0, a1)} is uniformly bounded. Define γ̃ : [0, 1] → Ḣs(RN ) by γ̃(s) = sũ, where ũ = tϕ
for some t > t1. Clearly, γ̃ ∈ Γũ and hence using (3.1) for a ∈ (0, a1),

Ia(ua) ≤ max
s∈[0,1]

Ia(γ̃(s)) = max
s∈[0,1]

Ia(stϕ). (3.2)

Further, since Fa(stϕ) ≥ M(stϕ)2 − a1stϕ − C(M) (see (2.8)), where M
∫
RN gϕ2 > 1

2 ,
we get

max
s∈[0,1]

Ia(stϕ) ≤ max
s∈[0,1]


s2t2


1

2 − M

∫

RN

gϕ2


+ sta1

∫

RN

gϕ + C(M)∥g∥1




≤ ta1

∫

RN

gϕ + C(M)∥g∥1.

Thus from (3.2), it is evident that Ia(ua) ≤ C for all a ∈ (0, a1). Next, we prove
the existence of a2 ∈ (0, a1) such that the set {[ua]s,2 : a ∈ (0, a2)} is uniformly
bounded, i.e., [ua]s,2 ≤ C for all a ∈ (0, a2) and for some C. On the contrary, assume
that no such a2 and C exist. Then there exists a sequence (an) in (0, a1), such that
an → 0, and [uan

]s,2 → ∞, as n → ∞. Observe that I ′
an

(uan
) = 0 for each n ∈ N, and

up to a subsequence, Ian(uan) → c in R. Set wan = uan [uan ]−1
s,2. Suppose wan ⇀ w

in Ḣs(RN ). Now using the convergence Nan(wan) → N0(w) (by Proposition 2.4(i)),
we can proceed with the same arguments as given in the proof of Proposition 2.5(ii)
(with a replaced by an) to get the following contradiction:

Ian
(tan

wan
) ≤ C(R)∥g∥1 + Ian

(uan
), ∀ n ∈ N,

and
Ian

(tan
wan

) → ∞, as n → ∞.

Thus there exists C such that [ua]s,2 ≤ C for all a ∈ (0, a2). Therefore, (ua) is
uniformly bounded in Ḣs(RN ).

Now we discuss the regularity of the mountain pass solution ua. Before proceeding
to the proof of Theorem 1.2, we recall a result in [24, Theorem 1.1], where the author
provided a sufficient condition for Hölder regularity of weak solutions to a class of
nonlocal equations. To state the result, we define the following spaces:

L1
2s(RN ) :=



u ∈ L1

loc(RN ) :
∫

RN

|u(x)|
1 + |x|N+2s

dx < ∞



 ,

W s,2
loc (RN ) :=





u ∈ L2
loc(RN ) :



∫∫

K×K

(u(x) − u(y))2

|x − y|N+2s
dxdy




1
2

< ∞





,

where K ⊂ RN is any relatively compact open set.
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Proposition 3.1. Let s ∈ (0, 1) and N > 2s. Let h ∈ Lq
loc(RN ) for q > N

2s . Assume
that u ∈ W s,2

loc (RN ) ∩ L1
2s(RN ) is a weak solution of the equation (−∆)su = h in RN .

Then u ∈ C0,α
loc (RN ) for α ∈ (0, min{2s − N

q , 1}).

Proof of Theorem 1.2. Let a2 be as given in Theorem 1.1 and a ∈ (0, a2). For τ > 0,
we consider the truncation function uτ ∈ L∞(RN ) associated with ua, defined as

uτ = max{−τ, min{ua, τ}}.

For r ≥ 2, set ϕ = ua|uτ |r−2. Clearly, ϕ ∈ L∞(RN ) ∩ Ḣs(RN ). Taking ϕ as a test
function in the weak formulation of ua, we have

∫∫

RN ×RN

(ua(x) − ua(y)(ua(x)|uτ (x)|r−2 − u(y)|uτ (y)|r−2)
|x − y|N+2s

dxdy

=
∫

RN

g(x)fa(ua)ua(x)|uτ (x)|r−2 dx.

(3.3)

We use [22, Lemma 3.1] and the embedding (2.1) to estimate the L.H.S of (3.3) as
∫∫

RN ×RN

(ua(x) − ua(y)(ua(x)|uτ (x)|r−2 − ua(y)|uτ (y)|r−2)
|x − y|N+2s

dxdy

≥ 4(r − 1)
r2

∫∫

RN ×RN

(ua(x)|uτ (x)| r
2 −1 − ua(y)|uτ (y)| r

2 −1)
|x − y|N+2s

dxdy

≥ 4(r − 1)
r2 C(N, s)



∫

RN

∣∣ua(x)|uτ (x)| r
2 −1∣∣2∗

s dx




2
2∗

s

.

Hence from (3.3) we get for every τ > 0 that


∫

RN

∣∣ua(x)|uτ (x)| r
2 −1∣∣2∗

s dx




2
2∗

s

≤ r2

4(r − 1)C(N, s)
∫

RN

g(x)|fa(ua)||ua(x)|r−1 dx.

Letting τ → ∞ the monotone convergence theorem yields


∫

RN

|ua(x)| r
2 2∗

s dx




2
2∗

s

≤ r2

4(r − 1)C(N, s)
∫

RN

g(x)|fa(ua)||ua(x)|r−1 dx. (3.4)

Step 1. In this step, for r1 = 2∗
s + 1, we show that |ua|r1 ∈ L

2∗
s
2 (RN ) and there

exists C such that ∥|ua|r1∥ 2∗
s
2

≤ C for all a ∈ (0, a2). Let ϵ > 0. Using the growth
condition (f̃1), for every a < a2, we have |fa(ua)| ≤ C + ϵ|ua|2∗

s−1, where C = C(ϵ, a2)
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(see (2.7)). Applying Hölder’s inequality with the conjugate pair ( 2∗
s

2 ,
2∗

s

2∗
s−2 ) and uniform

boundedness of (ua) in Ḣs(RN ) (from Theorem 1.1), we have the following estimates
for all a ∈ (0, a2):

∫

RN

g(x)|ua(x)|2∗
s dx ≤ ∥g∥∞∥ua∥2∗

s

Ḣs(RN ) ≤ C∥g∥∞,

∫

RN

g(x)|ua(x)|2∗
s−2|ua(x)|2∗

s+1 dx ≤ ∥g∥∞∥ua∥2∗
s−2

Ḣs(RN )



∫

RN

|ua(x)|
2∗

s
2 (2∗

s+1) dx




2
2∗

s

≤ C∥g∥∞



∫

RN

|ua(x)|
2∗

s
2 (2∗

s+1) dx




2
2∗

s

,

where C does not depend on a and ϵ. Hence (3.4) yields


∫

RN

|ua(x)|
2∗

s
2 r1 dx




2
2∗

s

≤ r2
1

4(r1 − 1)C∥g∥∞


C(ϵ, a2) + ϵ



∫

RN

|ua(x)|
2∗

s
2 r1 dx




2
2∗

s


 .

(3.5)

Now we choose ϵ such that
(

r2
1

4(r1 − 1)C∥g∥∞

)
ϵ <

1
2 .

Therefore, from (3.5), there exists C such that

1
2



∫

RN

|ua(x)|
2∗

s
2 r1 dx




2
2∗

s

≤ r2
1

4(r1 − 1)C∥g∥∞, ∀ a ∈ (0, a2). (3.6)

Thus the set {|ua|r1 : a ∈ (0, a2)} is uniformly bounded in L
2∗

s
2 (RN ).

Step 2. In this step, we obtain the uniform L∞ bound of (ua). Using (2.5) and (3.4),
for r > r1 we have



∫

RN

|ua(x)| r
2 2∗

s dx




2
2∗

s

≤ r2

4(r − 1)C(N, s, f, a2)
∫

RN

g(x)(1 + |ua(x)|2∗
s−1)|ua(x)|r−1 dx.

(3.7)
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Set m1 = 2∗
s(2∗

s−1)
r−2 and m2 := r − 1 − m1. Observe that m1 < 2∗

s whenever r > r1.
Applying Young’s inequality with ( 2∗

s

m1
,

2∗
s

2∗
s−m1

) we have the following estimate:

|u|r−1 = |u|m1 |u|m2 ≤ m1
2∗

s

|u|2∗
s + 2∗

s − m1
2∗

s

|u|
2∗

s m2
2∗

s −m1 ≤ |u|2∗
s + |u|

2∗
s m2

2∗
s −m1 ,

where we can verify 2∗
sm2

2∗
s−m1

= 2∗
s − 2 + r. Hence, by Theorem 1.1,

∫

RN

|ua(x)|r−1 dx ≤
∫

RN

|ua(x)|2∗
s dx +

∫

RN

|ua(x)|2∗
s−2+r dx

≤ ∥ua∥2∗
s

Ḣs(RN ) +
∫

RN

|ua(x)|2∗
s−2+r dx

≤ C


1 +

∫

RN

|ua(x)|2∗
s−2+r dx


 ,

where C does not depend on a. Therefore, from (3.7) we obtain the following estimate:

1 +

∫

RN

|ua(x)| r
2 2∗

s dx




2
2∗

s (r−2)

≤ r
1

r−2 (C∥g∥∞)
1

r−2


1 +

∫

RN

|ua(x)|2∗
s−2+r dx




1
r−2

,

(3.8)

where C = C(N, s, f, a2). We consider the sequence (rj) defined as follows:

r1 = 2∗
s + 1, r2 = 2 + 2∗

s

2 (r1 − 2), . . . , rj+1 = 2 + 2∗
s

2 (rj − 2).

Notice that 2∗
s − 2 + rj+1 = 2∗

s

2 rj and rj+1 − 2 =
(

2∗
s

2

)j

(r1 − 2). Then (3.8) yields


1 +

∫

RN

|ua(x)|
rj+1

2 2∗
s dx




2
2∗

s (rj+1−2)

≤ (rj+1C∥g∥∞)
1

rj+1−2


1 +

∫

RN

|ua(x)|
2∗

s
2 rj dx




2
2∗

s (rj −2)

.

Set

Dj =


1 +

∫

RN

|ua(x)|
2∗

s
2 rj dx




2
2∗

s (rj −2)

.
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We iterate the above inequality to get

Dj+1 ≤ C
∑j+1

k=2
1

rk−2

(
j+1∏

k=2
r

1
rk−2
k

)
D1, (3.9)

where C = C(N, s, f, g, a2). Using (3.6) of Step 1, D1 ≤ C for some C independent
of a. Moreover,

Dj+1 ≥






∫

RN

ua(x)
2∗

s rj+1
2 dx




2
2∗

s rj+1




rj+1
rj+1−2

= ∥ua∥
rj+1

rj+1−2

L
2∗

s rj+1
2 (RN )

.

Therefore, from (3.9) it is evident that

∥ua∥
rj+1

rj+1−2

L
2∗

s rj+1
2 (RN )

≤ C
∑j+1

k=2
1

rk−2

(
j+1∏

k=2
r

1
rk−2
k

)
C, ∀ a ∈ (0, a2). (3.10)

By noting that rj → ∞ as j → ∞, we use the above estimate and the interpolation
arguments to get ua ∈ Lr(RN ) for any r ∈ [2∗

s, ∞), and ∥ua∥r ≤ C(r, N, s, f, g, a2)
for all a ∈ (0, a2). Furthermore,

∞∑

k=2

1
rk − 2 = N

2s(2∗
s − 2)

and
∞∏

k=2
r

1
rk−2
k = exp

(
2

(2∗
s − 2)2 log

(
2
(

2∗
s(2∗

s − 2)
2

)2∗
s

))
.

Thus taking the limit as j → ∞ in (3.10), we conclude that ∥ua∥∞ ≤ C(N, s, f, g, a2)
for all a ∈ (0, a2).
Step 3. This step verifies the continuity of ua. Now, ua ∈ L∞(RN ) ⊂ L1

2s(RN ).
For q > N

2s ,
∫

RN

(gfa(ua))q ≤ C

∫

RN

gq(1 + |ua|(2∗
s−1)q) ≤ C∥g∥q

q(1 + ∥ua∥(2∗
s−1)q

∞ ) ≤ C, ∀ a ∈ (0, a2).

Further, using Proposition 2.1, Ḣs(RN ) ↪→ L2
loc(RN ), and hence from the character-

ization of Ḣs(RN ), Ḣs(RN ) ↪→ W s,2
loc (RN ). Therefore, applying Proposition 3.1 we

conclude that ua ∈ C0,α
loc (RN ) for α ∈ (0, min{2s − N

q , 1}). In particular, ua ∈ C(RN )
for all a ∈ (0, a2). This completes the proof.

Next, we prove a uniform lower bound for (ua) in L∞(RN ).

Proposition 3.2. Let f, g, a2, ua be as given in Theorem 1.2. Then there exist
ã2 ∈ (0, a2) and β1 > 0 such that ∥ua∥∞ ≥ β1, for all a ∈ (0, ã2).
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Proof. By the definition, Fa(t) ≥ −a|t|, for all t ∈ R. For β as given in Proposition 2.5
we see that Ia(ua) ≥ β, for all a ∈ (0, a2). Hence using the uniform boundedness
of (ua) in Ḣs(RN ) (Theorem 1.1), we get for all a < a2,

[ua]2s,2
2 = Ia(ua) +

∫

RN

gFa(ua) ≥ β − a

∫

RN

g|ua| ≥ β − aC
(

∥g∥1∥g∥ N
2s

) 1
2

.

Choose 0 < ã2 < min
{

βC−1
(

∥g∥1∥g∥ N
2s

)− 1
2

, a2

}
. Then

[ua]2s,2
2 ≥ β0 := β − ã2C

(
∥g∥1∥g∥ N

2s

) 1
2

> 0, ∀ a ∈ (0, ã2).

Hence using |fa(ua)| ≤ C(1+ |ua|2∗
s−1) and the fact that ua ∈ L∞(RN ) (Theorem 1.2),

we get

β0 ≤ 1
2

∫

RN

g|fa(ua)ua| ≤ C∥g∥1

(
∥ua∥∞ + ∥ua∥2∗

s
∞

)
,

where C does not depend on a. Therefore, there exists β1 > 0 such that ∥ua∥∞ ≥ β1,
for all a ∈ (0, ã2).

4. POSITIVITY OF THE SOLUTIONS

This section contains the proof of Theorem 1.3. Afterwards, we give an example of
a function satisfying all the hypotheses in this paper. The idea of our proof for the
positivity of solutions is motivated by [1, Theorem 1.1] (also, see [4, Theorem 4.14]).

Proof of Theorem 1.3. (i) For ã2 as in Proposition 3.2, take a3 ∈ (0, ã2). Let (an)
be a sequence in (0, a3) such that an → 0 as n → ∞. We aim to show that uan

is
nonnegative on RN for large n. By Theorem 1.1, uan

∈ Ḣs(RN ) is a mountain pass
solution of (SP), such that the following hold (up to a subsequence):

I ′
an

(uan
) = 0, for each n ∈ N, Ian

(uan
) → c, as n → ∞, and ∥uan

∥s,2 ≤ C. (4.1)

Therefore, (uan) is a bounded Palais–Smale sequence in Ḣs(RN ). For brevity, we
denote the sequence (uan

) by (un). Since Ia satisfies the Cerami condition, using the
same arguments as in Proposition 2.5(i) (replacing a by an), we obtain that (up to
a subsequence) un → ũ in Ḣs(RN ), and un(x) → ũ(x) a.e. in RN . We split the rest of
our proof into two steps. In the first step, we prove that ũ is nonnegative and (un)
converges uniformly to ũ on RN . In the second step, we obtain the non-negativity of un.
Step 1. We consider the following function:

f0(t) =
{

f(t), if t ≥ 0,

0, if t ≤ 0.
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Since an → 0 in R+ and un → ũ in Ḣs(RN ), using (ii) of Proposition 2.4 it follows
that

lim
n→∞

∫

RN

g(x)fan
(un)ϕ(x) dx =

∫

RN

g(x)f0(ũ)ϕ(x) dx, ∀ ϕ ∈ Ḣs(RN ).

So we have the following identity for every ϕ ∈ Ḣs(RN ):

∫∫

RN ×RN

(ũ(x) − ũ(y)(ϕ(x) − ϕ(y))
|x − y|N+2s

dxdy

= lim
n→∞

∫∫

RN ×RN

(un(x) − un(y)(ϕ(x) − ϕ(y))
|x − y|N+2s

dxdy

= lim
n→∞

∫

RN

g(x)fan
(un)ϕ(x) dx =

∫

RN

g(x)f0(ũ)ϕ(x) dx.

Therefore, ũ satisfies the following equation weakly:

(−∆)su = g(x)f0(u) in RN . (4.2)

Since |x|2s−N is a fundamental solution of (−∆)s (see [29, Theorem 5]), we get

ũ(x) = C(N, s)
∫

RN

g(y)f0(ũ(y))
|x − y|N−2s

dy ≥ 0 a.e. in RN . (4.3)

Further, using the similar set of arguments as given in Theorem 1.2, we see that
ũ ∈ L∞(RN ) ∩ C(RN ). Moreover, since un is a solution of (SP), we also have

un(x) = C(N, s)
∫

RN

g(y)fan
(un(y))

|x − y|N−2s
dy a.e. in RN . (4.4)

Using (4.3) and (4.4) we estimate |un − ũ| as follows:

|un(x) − ũ(x)| ≤ C(N, s)
( ∫

B1(x)

g(y) |fan(un(y)) − f0(ũ(y))|
|x − y|N−2s

dy

+
∫

RN \B1(x)

g(y) |fan
(un(y)) − f0(ũ(y))|

|x − y|N−2s
dy

)
.

(4.5)
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Take 1 < δ < N
N−2s . Applying Hölder’s inequality with the conjugate pair (δ, δ′)

we estimate the first integral of (4.5) as
∫

B1(x)

g(y) |fan
(un(y)) − f0(ũ(y))|

|x − y|N−2s
dy

≤




∫

B1(x)

1
|x − y|(N−2s)δ

dy




1
δ



∫

B1(x)

g(y)δ′ |fan
(un(y)) − f0(ũ(y))|δ′

dy




1
δ′

.

We calculate
∫

B1(x)

1
|x − y|(N−2s)δ

dy = ωN

1∫

0

rN−1

r(N−2s)δ
dr ≤ C(N).

We show that the second integral of the above inequality converges to zero. Observe that

|fan(un(y)) − f0(ũ(y))|δ′ ≤ 2δ′−1
(

aδ′
n + |f0(un(y)) − f0(ũ(y))|δ′)

, (4.6)

where using (2.6) and the uniform boundedness of the mountain pass solution
in L∞(RN ) (Theorem 1.2), we get

|f0(un(y)) − f0(ũ(y))|δ′ ≤ C2δ′−1(1 + |un(y)|(2∗
s−1)δ′

+ |ũ(y)|(2∗
s−1)δ′

) ≤ C.

Moreover, f0(un(y)) → f0(ũ(y) and an → 0 as n → ∞. Therefore, by the dominated
convergence theorem,

∫

B1(x)

g(y)δ′
(aδ′

n + |f0(un(y)) − f0(ũ(y))|δ′
) dy → 0.

Hence using (4.6) and the generalized dominated convergence theorem, we con-
clude that

∫

B1(x)

g(y)δ′ |fan
(un(y)) − f0(ũ(y))|δ′

dy → 0, as n → ∞.

Next, the second integral of (4.5) has the following bound:
∫

RN \B1(x)

g(y) |fan(un(y)) − f0(ũ(y))|
|x − y|N−2s

dy ≤
∫

RN \B1(x)

g(y)|fan
(un(y)) − f0(ũ(y))|.

Again by the generalized dominated convergence theorem,
∫

RN \B1(x)

g(y)|fan
(un(y)) − f0(ũ(y))| → 0.
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Therefore, (4.5) yields un → ũ in L∞(RN ) as n → ∞. Thus (un) converges uniformly
to ũ on RN .
Step 2. Now ũ ∈ C(RN ) ∩ L∞(RN ) is a non-negative function and satisfies (−∆)sũ ≥ 0
in the weak sense in RN (from (4.2)). Suppose ũ(x0) = 0 for some x0 ∈ RN . Since ũ
satisfies all the properties of the strong maximum principle [20, Proposition 5.2.1],
we conclude that ũ vanishes identically on RN . Further, from the uniform lower
bound of (un) in Proposition 3.2 and the uniform convergence of un → ũ (Step 1),
there exists β2 > 0 such that ∥ũ∥∞ ≥ β2, a contradiction. Thus ũ ̸= 0 on RN

and [20, Proposition 5.2.1] yields ũ > 0 on RN . Therefore, again from the uniform
convergence of (un), there exists n1 ∈ N such that for all n ≥ n1, un ≥ 0 on RN .

(ii) For a sequence (an) given in (i), we show uan
(denoted by un) is positive

on RN for large n. For each n ∈ N, since fan
is locally Lipschitz (from (f3)) and

0 ≤ un, ũ ≤ C, we have |fan
(un(y)) − fan

(ũ(y))| ≤ M |un(y) − ũ(y)| for some M > 0.
For x ∈ RN \ {0}, using (4.3) and (4.4) we write

|un(x) − ũ(x)| ≤ C(N, s)


M

∫

RN

g(y)|un(y) − ũ(y)|
|x − y|N−2s

dy + an

∫

RN

g(y)
|x − y|N−2s

dy


 .

Since g satisfies (g1), from the above inequality and Step 1 we get

|un(x) − ũ(x)| ≤ C(N, s) (M∥un − ũ∥∞ + an) C(g)
|x|N−2s

.

Hence

sup
x∈RN \{0}

{
|x|N−2s|un(x) − ũ(x)|

}
→ 0, as n → ∞. (4.7)

Now we show that lim
|x|→∞

|x|N−2sũ(x) > 0. Using (4.3) we get

lim
|x|→∞

|x|N−2sũ(x) = C(N, s) lim
|x|→∞

∫

RN

g(y)f0(ũ(y))|x|N−2s

|x − y|N−2s
dy

≥ C(N, s) lim
|x|→∞

∫

BR

g(y)f0(ũ(y))|x|N−2s

|x − y|N−2s
dy,

(4.8)

for any R > 0. Choose R > 0 arbitrarily. Then there exists x ∈ RN such that
|x| > 2R + 1. Hence

|x − y|N−2s ≥ ||x| − |y||N−2s ≥ ||x| − R|N−2s ≥ 22s−N (1 + |x|)N−2s
, for y ∈ BR.

Using the above estimate, for y ∈ BR we get

g(y)f0(ũ(y))|x|N−2s

|x − y|N−2s
≤ 2N−2sg(y)f0(ũ(y)).
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Further,
g(y)f0(ũ)|x|N−2s

|x − y|N−2s
→ g(y)f0(ũ) a.e. in BR,

as |x| → ∞. Therefore, the dominated convergence theorem yields

lim
|x|→∞

∫

BR

g(y)f0(ũ(y))|x|N−2s

|x − y|N−2s
dy =

∫

BR

g(y)f0(ũ(y)) dy.

Hence from (4.8) we conclude that

lim
|x|→∞

|x|N−2sũ(x) ≥ C(N, s)
∫

BR

g(y)f0(ũ(y)) dy.

Letting R → ∞ and applying the Fatou’s lemma,

lim
|x|→∞

|x|N−2sũ(x) ≥ C(N, s)
∫

RN

g(y)f0(ũ(y)) dy.

Further, using (4.3) and ũ > 0 on RN , it follows that gf0(ũ) ≩ 0 on RN . Hence,

lim
|x|→∞

|x|N−2sũ(x) > 0.

Therefore, from (4.7) there exists n2 ∈ N and R >> 1 such that for n ≥ n2, un > 0
on Bc

R. Moreover, since ũ ∈ C(RN ), there exists η > 0 such that ũ > η on BR.
Therefore, from the uniform convergence of (un) (in Step 1), there exists n3 ∈ N such
that for n ≥ n3, un > 0 on BR. Thus, by choosing n4 = max{n2, n3}, we see that for
n ≥ n4, un > 0 on RN . This completes the proof.

Example 4.1. Let s ∈ (0, 1) and N > 2s. For R > 0, we consider the following
functions:

f(t) = 2t ln(1 + |t|), for t ∈ R+, g(y) =
χBR(0)(y)

(1 + |y|)2(N−2s) , for y ∈ RN .

(i) We can verify that f satisfies (f1)–(f3) and (f̃1).
(ii) Clearly g ∈ L1(RN )∩L∞(RN ). We show that g satisfies (g1). For x ∈ RN \{0}, split

∫

RN

g(y)
|x − y|N−2s

dy =
∫

|x−y|≥ |x|
2

g(y)
|x − y|N−2s

dy +
∫

|x−y|≤ |x|
2

g(y)
|x − y|N−2s

dy.

The first integral has the following bound:
∫

|x−y|≥ |x|
2

g(y)
|x − y|N−2s

dy ≤
(

2
|x|

)N−2s

∥g∥1.
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Now consider the case |x − y| ≤ |x|
2 . Set z = x − y. Then |x − z| ≥ ||x| − |z|| ≥ |x|

2
and hence |x − z| ≥ |z|. Using the fact that g(y) ≤ g(x

2 ) and g(y) ≤ g(z) we obtain
∫

|x−y|≤ |x|
2

g(y)
|x − y|N−2s

dy ≤
∫

|z|≤ |x|
2

(g( x
2 )g(z)) 1

2

|z|N−2s
dz

≤ 2N−2sχBR(0)( x
2 )

(2 + |x|)N−2s

∫

BR(0)

dz

(1 + |z|)N−2s|z|N−2s

≤
(

2
|x|

)N−2s

ω(N)
R∫

0

r2s−1

(1 + r)N−2s
dr

≤
(

2
|x|

)N−2s

C(N),

for some constant C(N). Here ω(N) is the measure of B1(0) in RN . Therefore,

|x|N−2s

∫

RN

g(y)
|x − y|N−2s

dy ≤ C(g, N)

for x ∈ RN \ {0}.
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