Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Test artifacts, resembling real machine parts, allow for quantitative evaluation of system performance and provide insight into individual errors, aiding in improvement and standardization of additive manufacturing. The article provides a comprehensive overview of existing test artifacts, categorized based on geometric features and the material used. Various measurement techniques such as stylus profilometry and computed tomography are employed to assess these artifacts. It is also shown that the selective laser melting (SLM) technology and titanium alloys are prevalent in artifact creation. Specific artifact categories include slits, angular aspects, length parameters, variable surfaces, and others, each accompanied by examples from research literature, highlighting diverse artifact designs and their intended applications. The paper critically discusses the main problems with existing geometries. It underscores the importance of user-friendly and unambiguous artifacts for dimensional control, particularly in surface metrology. Furthermore, it anticipates the continued growth of metrological verification in future manufacturing environments, emphasizing the need for precise and reliable measurement results to support decision-making under production conditions.
Rocznik
Tom
Strony
art. no. e151380
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
- Poznan University of Technology, Poland
autor
- Poznan University of Technology, Poland
autor
- Opole University of Technology, Poland
autor
- Opole University of Technology, Poland
autor
- Opole University of Technology, Poland
autor
- Central Office of Measures (GUM), Poland
autor
- Central Office of Measures (GUM), Poland
autor
- Opole University of Technology, Poland
autor
- Poznan University of Technology, Poland
autor
- Poznan University of Technology, Poland
Bibliografia
- [1] ASTM Standard F2792, “Terminology for Additive Manufacturing Technologies,” ASTM International, 2012, doi: 10.1520/f2792-12.
- [2] J. Richter and P.F. Jacobs, Accuracy in Rapid Prototyping & Manufacturing. Society of Manufacturing Engineers, 1992, pp. 287–315.
- [3] B. Hao, E. Korkmaz, B. Bediz, and O.B. Ozdoganlar, “A Novel Test Artifact for Performance valuation of Additive Manufacturing Processes,” Proc. ASPE 2014 Spring Topical Meeting: Dimensional Accuracy and Surface Finish in Additive Manufacturing, 2014, pp. 167–172.
- [4] M.B. Bauza et al., “Study of accuracy of parts produced using additive manufacturing,” Proc. ASPE 2014 Spring Topical Meeting: Dimensional Accuracy and Surface Finish in Additive Manufacturing, 2014, pp. 86–91.
- [5] J.-P. Kruth, M.C. Leu, and T. Nakagawa, “Progress in Additive Manufacturing and Rapid Prototyping,” CIRP Ann., vol. 47, no. 2, pp. 525–540, 1998, doi: 10.1016/s0007-8506(07)63240-5.
- [6] D. Scaravetti, P. Dubois, and R. Duchamp, “Qualification of rapid prototyping tools: proposition of a procedure and a test part,” Int. J. Adv. Manuf. Technol., vol. 38, no. 7–8, pp. 683–690, 2007, doi: 10.1007/s00170-007-1129-2.
- [7] S. Moylan, J. Slotwinski, A. Cooke, K. Jurrens, and M.A. Donmez, “An Additive Manufacturing Test Artifact,” J. Res. Natl. Inst. Stand. Technol., vol. 119, p. 429, 2014, doi: 10.6028/jres.119.017.
- [8] G.D. Kim and Y.T. Oh, “A benchmark study on rapid prototyping processes and machines: Quantitative comparisons of mechanical properties, accuracy, roughness, speed, and material cost,” Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf., vol. 222, no. 2, pp. 201–215, 2008, doi: 10.1243/09544054jem724.
- [9] A. Townsend, N. Senin, L. Blunt, R.K. Leach, and J.S. Taylor, “Surface texture metrology for metal additive manufacturing: a review,” Precis. Eng., vol. 46, pp. 34–47, 2016, doi: 10.1016/j.precisioneng.2016.06.001.
- [10] Z. Chen, X. Wu, D. Tomus, and C.H.J. Davies, “Surface roughness of Selective Laser Melted Ti-6Al-4V alloy components,” Addit. Manuf., vol. 21, pp. 91–103, 2018, doi: 10.1016/j.addma.2018.02.009.
- [11] E. Chlebus, B. Kuźnicka, T. Kurzynowski, and B. Dybała, “Microstructure and mechanical behaviour of Ti—6Al—7Nb alloy produced by selective laser melting,” Mater. Charact., vol. 62, no. 5, pp. 488–495, 2011, doi: 10.1016/j.matchar.2011.03.006.
- [12] A.T. Sidambe, “Three dimensional surface topography characterization of the electron beam melted Ti6Al4V,” Metal Powder Rep., vol. 72, no. 3, pp. 200–205, 2017, doi: 10.1016/j.mprp.2017.02.003.
- [13] G. Strano, L. Hao, R.M. Everson, and K.E. Evans, “Surface roughness analysis, modelling and prediction in selective laser melting,” J. Mater. Process. Technol., vol. 213, no. 4, pp. 589–597, 2013, doi: 10.1016/j.jmatprotec.2012.11.011.
- [14] T. Grimm, G. Wiora, and G. Witt, “Characterization of typical surface effects in additive manufacturing with confocal microscopy,” Surf. Topogr.-Metrol. Prop., vol. 3, no. 1, p. 014001, 2015, doi: 10.1088/2051-672x/3/1/014001.
- [15] A. Jansson and L. Pejryd, “Characterisation of carbon fibre-reinforced polyamide manufactured by selective laser sintering,” Addit. Manuf., vol. 9, pp. 7–13, 2016, doi: 10.1016/j.addma.2015.12.003.
- [16] S. Moylan, “Progress toward standardized additive manufacturing test artifacts,” in Proc. ASPE 2015 Spring Topical Meeting: Achieving Precision Tolerances in Additive Manufacturing, 2015, pp. 100–105.
- [17] L.C. Zhang, D. Klemm, J. Eckert, Y.L. Hao, and T.B. Sercombe, “Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy,” Scripta Mater., vol. 65, no. 1, pp. 21–24, 2011, doi: 10.1016/j.scriptamat.2011.03.024.
- [18] W. Edit, E. Tatman, J. McCarther, J. Kastner, S. Gunther, and J. Gockel, “Surface roughness characterization in laser powder bed fusion additive manufacturing,” 30th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, 2019.
- [19] P.B. Bacchewar, S.K. Singhal, and P.M. Pandey, “Statistical modelling and optimization of surface roughness in the selective laser sintering process,” Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf., vol. 221, no. 1, pp. 35–52, 2007, doi: 10.1243/09544054jem670.
- [20] L. Castillo, “Study about the rapid manufacturing of complex parts of stainless steel and titanium,” TNO report with the collaboration of AIMEE, 2005. [Online]. Available: https://publications.tno.nl/publication/34639026/gfJMtd/castillo-2005-study.pdf
- [21] A. Charles, A. Elkaseer, L. Thijs, V. Hagenmeyer, and S. Scholz, “Effect of Process Parameters on the Generated Surface Roughness of Down-Facing Surfaces in Selective Laser Melting,” Appl. Sci., vol. 9, no. 6, p. 1256, 2019, doi: 10.3390/app9061256.
- [22] F. Cabanettes et al., “Topography of as built surfaces generated in metal additive manufacturing: A multi scale analysis from form to roughness,” Precis. Eng., vol. 52, pp. 249–265, 2018, doi: 10.1016/j.precisioneng.2018.01.002.
- [23] “Studying the repeatability in DMLS technology using a complete geometry test part,” in Innovative Developments in Design and Manufacturing, CRC Press, 2009, pp. 367–372, doi: 10.1201/9780203859476-63.
- [24] B. Cavallini, J. Ciurana, C. Reguant, and J. Delgado, “Studying the repeatability in DMLS technology using a complete geometry test part,” in Innovative Developments in Design and Manufacturing, CRC Press, 2009, doi: 10.1201/9780203859476.ch54.
- [25] A. Townsend, L. Pagani, P. Scott, and L. Blunt, “Areal Surface texture data extraction from X-ray computed tomography reconstructions of metal additively manufactured parts,” Precis. Eng., vol. 48, pp. 254–264, 2017, doi: 10.1016/j.precisioneng.2016.12.008.
- [26] P. Danilevičius et al., “Laser 3D micro/nanofabrication of polymers for tissue engineering applications,” Opt. Laser Technol., vol. 45, pp. 518–524, 2013, doi: 10.1016/j.optlastec.2012.05.038.
- [27] J.P. Kruth, “Material Incress Manufacturing by Rapid Prototyping Techniques,” CIRP Ann., vol. 40, no. 2, pp. 603–614, 1991, doi: 10.1016/s0007-8506(07)61136-6.
- [28] R. Ippolito, L. Iuliano, and A. Gatto, “Benchmarking of Rapid Prototyping Techniques in Terms of Dimensional Accuracy and Surface Finish,” CIRP Ann., vol. 44, no. 1, pp. 157–160, 1995, doi: 10.1016/s0007-8506(07)62296-3.
- [29] M. Fahad and N. Hopkinson, “Evaluation and comparison of geometrical accuracy of parts produced by sintering-based additive manufacturing processes,” Int. J. Adv. Manuf. Technol., vol. 88, no. 9–12, pp. 3389–3394, 2016, doi: 10.1007/s00170-016-9036-z.
- [30] M. Mahesh, Y.S. Wong, J.Y. H. Fuh, and H.T. Loh, “Benchmarking for comparative evaluation of RP systems and processes,” Rapid Prototyping J., vol. 10, no. 2, pp. 123–135, 2004, doi: 10.1108/13552540410526999.
- [31] T.B. Sercombe and N. Hopkinson, “Process Shrinkage and Accuracy during Indirect Laser Sintering of Aluminium,” Adv. Eng. Mater., vol. 8, no. 4, pp. 260–264, 2006, doi: 10.1002/adem.200500265.
- [32] C. Gomez, R. Su, A. Thompson, J. DiSciacca, S. Lawes, and R. Leach, “Optimization of surface measurement for metal additive manufacturing using coherence scanning interferometry,” Opt. Eng., vol. 56, no. 11, p. 111714, 2017, doi: 10.1117/1.oe.56.11.111714.
- [33] C.E. Roberts, D. Bourell, T. Watt, and J. Cohen, “A Novel Processing Approach for Additive Manufacturing of Commercial Aluminum Alloys,” Phys. Procedia, vol. 83, pp. 909–917, 2016, doi: 10.1016/j.phpro.2016.08.095.
- [34] D. Sims-Waterhouse, P. Bointon, S. Piano, and R.K. Leach, “Experimental comparison of photogrammetry for additive manufactured parts with and without laser speckle projection,” in Optical Measurement Systems for Industrial Inspection X, 2017, doi: 10.1117/12.2269507.
- [35] J.P. Kruth, B. Vandenbroucke, J.V. Vaerenbergh, and P. Mercelis, “Benchmarking of different SLS/SLM processes as rapid manufacturing techniques,” Int. Conf. Polymers & Moulds Innovations (PMI), Gent, Belgium, 2005.
- [36] W. Liu, “Optical and XCT Measurement of Additively Manufactured Surfaces,” Fields – J. Huddersfield Stud. Res., vol. 7, no. 1, 2021, doi: 10.5920/fields.803.
- [37] A. Triantaphyllou et al., “Surface texture measurement for additive manufacturing,” Surf. Topogr.-Metrol. Prop., vol. 3, no. 2, p. 024002, 2015, doi: 10.1088/2051-672x/3/2/024002.
- [38] Y. Zou, J. Li, and Y. Ju, “Surface topography data fusion of additive manufacturing based on confocal and focus variation microscopy,” Opt. Express, vol. 30, no. 13, p. 23878, Jun. 2022, doi: 10.1364/oe.454427.
- [39] A. Matilla, J. Mariné, J. Pérez, C. Cadevall, and R. Artigas, “Three-dimensional measurements with a novel technique combination of confocal and focus variation with a simultaneous scan,” in SPIE Proceedings, 2016, doi: 10.1117/12.2227054.
- [40] R. Leach, Optical Measurement of Surface Topography. Springer Science & Business Media, 2011.
- [41] T. Bartkowiak, B. Gapiński, M. Wieczorowski, P. Mietliński, and C.A. Brown, “Capturing and characterizing geometric complexities of metal additively manufactured parts using x-ray microcomputed tomography and multiscale curvature analyses,” Surf. Topogr.-Metrol. Prop., vol. 11, no. 1, p. 014002, 2023, doi: 10.1088/2051-672x/acb3e7.
- [42] A. Townsend et al., “An interlaboratory comparison of X-ray computed tomography measurement for texture and dimensional characterisation of additively manufactured parts,” Addit. Manuf., vol. 23, pp. 422–432, 2018, doi: 10.1016/j.addma.2018.08.013.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e7d3b16-096f-439f-9819-8a966f880d58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.