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ON JORDAN-CHEVALLEY DECOMPOSITION

Summary. Expressing a linear operator f on a finite-dimensional vec-
tor space over any field K as a sum of two commuting operators — semisim-
ple and nilpotent — is called the Jordan-Chevalley decomposition of f. It is
known that this decomposition exists for an arbitrary f if only K is perfect.
In this paper we give some methods for determining the decomposition.

O ROZKLADZIE JORDANA-CHEVALLEYA

Streszczenie. Zapis operatora liniowego dzialajacego na skonczenie
wymiarowej przestrzeni wektorowej nad dowolnym ciatem K w postaci sumy
dwoch przemiennych operatoréw — pélprostego i nilpotentnego — nazywa-
my rozktadem Jordana-Chevalleya tego operatora. Wiadomo, ze jesli K jest
cialem doskonalym, to taki rozklad istnieje dla dowolnego operatora. Celem
artykulu jest oméwienie metod wyznaczenia postulowanego rozktadu.

1. Introduction

If a matrix is upper-triangular, it is easy to decompose it into a ”diagonal
part” and ”strictly upper-triangular part” (which is in particular nilpotent). For

instance
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12710+02
0 1] |0 1

It is obvious that the matrices on the right commute. But this is not always so,
for instance

1 2] |1 0_+_o 2 |
0 3| |0 3 0 0|’

but the matrices on the right do not commute. Since each linear operator on
a vector space of dimension n can be represented by a square matrix of order n, the
above decompositions can be also viewed as decompositions of linear operators.
Diagonality (or, in general — semisimplicity) and nilpotency of summands can
provide some profits in examining the properties of a matrix itself. However, to
derive really nice and interesting properties, one usually needs commutativity of
the summands, like in the binomial theorem (for finding powers of a sum).
Expressing a linear operator f on a finite-dimensional vector space over any
field K as a sum of two commuting operators — semisimple and nilpotent — is
called the Jordan-Chevalley decomposition of f (or Jordan decomposition). This
decomposition can be easily described if f has so-called Jordan normal form (which
explains the first part of the name), but it may exist even if the Jordan normal form
does not. The most general result (known as the Jordan-Chevalley decomposition
theorem) guarantees the existence of the unique Jordan-Chevalley decomposition
if only K is perfect. Thus it plays a very important role in examining Lie algebras,
leading eventually to the corresponding decompositon of every element in finite-
dimensional Lie algebras in two main cases — the semisimple Lie algebras over
algebraically closed fields of characteristic 0 (like C, examined by Claude Chevalley
(which explains the second part of the name), see e.g. [2] for further details)
and the restricted Lie algebras over perfect fields of prime characteristic (usually
called the Jordan-Chevalley-Seligman decomposition then). The Jordan-Chevalley
decomposition is also called Dunford decomposition (after Nelson Dunford, who
generalized it to Banach spaces) or SN decomposition (Semisimple & Nilpotent).
In this paper we focus on determining the decomposition. For the convenience
of the Reader we include Section 2, which is a collection of notions and facts crucial
for further considerations. However, we still assume the Reader is familiar with
the very basic concepts of linear algebra, fields and polynomial rings. In Section 3
we formulate and prove the Jordan-Chevalley decomposition theorem (our proof
is inspired by those in [2] and [3]) and point out some observations. Also, we
give an example of a matrix over a non-perfect field having no Jordan-Chevalley
decomposition, confirming that the perfectness of the field is crucial. Finally, in
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Section 4 we discuss a few methods (based on the results from Section 3) for
determining the Jordan-Chevalley decomposition and give some examples.

2. Preliminaries

Note that this section plays an informative role only — considering the topics
in details would exceed the scope of this paper. We refer the Reader to any book
on linear algebra, fields and polynomial rings (e.g. [1]) for further details.

Notions: From now on K will denote a field, V' — a finite-dimensional vector space
over K, End(V') — the ring of linear operators (endomorphisms) on V, K[z] — the
ring of polynomials (in x) over K and M, (K) — the ring of square matrices of
order n over K. To refer to the elements of a given matrix A we write A = [a;;].
The image of f € End(V) will be denoted by f(V), the identity operator by Id,
the identity matrix (of any order) by I and the zero operator or matrix by 0.

Definition 1. (i) A field L is called an extension field of K if K is a subfield
of L. An extension field L of K is called finite-dimensional if the dimension of
L (viewed as a vector space over K ) is finite.

(it) Let L be an extension field of K. a € L is called algebraic over K if
it is a root of some polynomial over K, otherwise it is called transcendental
over K. L is called an algebraic extension field of K if every element in L is
algebraic over K. The smallest extension field of K containing all roots of a given
polynomial P(x) € K|[z| is called a root (or splitting) field of P(x) over K.

(7it) Let L be an algebraic extension field of K and G — a group of automor-
phisms o of L that fix each k € K (that is o(k) = k). A set of all elements in L
fixed by each automorphism in G forms a field called the fixed field for G and it
contains K. L is called a Galois extension of K if K itself is the fixed field of
G. Then G is called the Galois group of L over K and is denoted by G(L/K).

Examples: (i) R is a subfield of C and the geometrical representation implies
that C = R? (as vector spaces). Hence C is a finite-dimensional extension of R.
(ii) C is also an algebraic extension of R, since a+bi is a root of (z — a)? + b2.
In particular, C is a root field of 22 + 1 over R. 7 is transcendental over Q. Note
that transcendental over any field K always exists and it it frequently used — e.g.
it is = we use to define K{z]. (ii7) C is a Galois extension of R, because one of the
automorphisms of C fixing R elementwise is conjugation and the set of elements
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it fixes is exactly R. Note that (ii7) is not the standard definition of a Galois
extension — usually it is a theorem (see e.g. [1, Chapter VIII, Theorem 1]).

Definition 2. K is called perfect if every irreducible polynomial over K decom-
poses into distinct linear factors (over some extension field of K ).

Examples: Every field of characteristic 0 is perfect. If a field has a prime
characteristic p, then it is perfect if and only if every element is a p-th power of
some element. In particular, every finite or algebraically closed field is perfect.

Definition 3. (i) Let f € End(V). Then s : K[z] — End(V') defined as
orlap+arz+---+anz™) =apld+ a1 f+ - +anf"

is a homomorphism of rings. Its every value, for a given polynomial P(x) deno-

ted by P(f), is called a polynomial of f. ps(x) € K[z] is called the minimal

polynomial of f if it is monic of the least possible degree such that ps(f) = 0.
(13) Let A € Mp,(K). Then ¢4 : K[z] = Mp(K) defined as

valag+ a1z + -+ apz") =agl + a1 A+ -+ a, A"

is a homomorphism of rings. Its every value, for a given polynomial P(x) denoted
by P(A), is called a polynomial of A. pa(z) € Klz| is called the minimal
polynomial of A if it is monic of the least possible degree such that pa(A) = 0.

Examples: For any K,V, f, A we have pf(x) = f, pa(xz) = A, so f (resp.
A) is a polynomial of f (resp. A). Moreover, prqa(x) = x — 1, since Id # 0 and
pra(Id) = Id — Id = 0. Similarly, p;(z) = = — 1. Note that if A is a matrix
representation of f, then pa(z) = py(z). Also, if f #0 (A # 0) then the minimal
polynomial has a positive degree.

Definition 4. (i) Let A€ M, (K). Then xa(z) := det(xl — A) is a polynomial
over K called the characteristic polynomial of A. Roots of xa(x) are called
eitgenvalues of A.

(it) Let f € End(V). The characteristic polynomial of a matrix representation
of f with respect to every basis of V' is the same and is called the characteristric
polynomial of f. It is denoted by xs(x). Its roots are called eigenvalues of f.

Examples: The characteristic polynomial of a zero matrix of order n is ", the
characteristic polynomial of the identity matrix of order n is ( — 1)™. Both have
only one eigenvalue, 0 and 1, respectively. Note that deg(xa(x)) is equal to the
order of A, whence deg(x¢(z)) = dim V. Sometimes the characteristic polynomial
is defined as det(A — zI).
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Definition 5. Let V' be a vector space over K and let V1,Va,...,V, be its sub-
spaces. We say that V is a direct sum of subspaces Vi,Vs,... V. and write

V=@V ifV=>V ande(ZVQ = {0y} for eachi=1,2,...,r.
i=1 i=1 ki

Example: Let V = R?, V; = {(a,0)] a € R}, Vo = {(0,b)| b € R}. Then
2
V=@ V;since Vi+ Vo ={v1+wvs| v1 € V1, v € Vo} =V and V1NV, = {(0,0)}.

i=1

Definition 6. (i) Let A = [ai;] € My (K), B = [bi;] € Mp(K).

aij 1 < Z,j < m
Then C = [cij] € Mpyyn(K) such that cij = bi—pmjom m<i,j<m+n
0 otherwise

is called a direct sum of A, B and denoted by A® B.
(it) A direct sum of any finite number of square matrices, A1, .., A, say, is

defined in the standard inductive way and denoted by @ A; for short.
i=1

-3 0 0
1
Examples: K =R (i) A=[-3] B= A .Then A®B = 0 1 1
0 4 5
3 7 0 0
(it) Ay = [7], A2 =[8], A3 =[1]. Then @ Ai=10 8 0
=t 00 1
a 1=7
Definition 7. (i) Fora € K let mf;:=q1 j=i+1.
0 otherwise
A square matriz J, = [mgj] of any order is called a Jordan block (corresponding

toa). A direct sum of a finite number of Jordan blocks is called a Jordan matrix.
(#7) Let A € M, (K). A Jordan matriz J € M, (K) is called a Jordan normal
form of A if there exists an invertible matriz C € M, (K) such that A = CJC~L.
(7it) We say that f € End(V) has a Jordan normal form if there exists
a basis of V' with respect to which a matriz representation of f is a Jordan matriz.

Examples: (i) The identity matrix of any order n is a Jordan matrix since
n

I = ][1]. (i1) Each Jordan matrix is a Jordan normal form of itself (for C = I).
i=1
(791) Id has a Jordan normal form (since its matrix representation with respect

to the standard basis is I). Note that elements lying on the diagonal of J are
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eigenvalues of A. Also note, that if A is a matrix representation of f (with respect
to the standard basis), J, C as in (i7), then columns of C' are in fact vectors in the
basis with respect to which a matrix representation of f is J.

Definition 8. (i) A € M, (K) is called diagonalizable if there exists a diagonal
matriz D € M, (K) and an invertible matriz C € M,,(K) such that A= CDC™1.
A e M, (K) is called semisimple if it is diagonalizable over some extension field
of K. A is called nilpotent if there exists a natural number n such that A™ = 0.

(it) f € End(V) is called diagonalizable (respectively: semisimple) if any
matrixz representation of f is diagonalizable (respectively: semisimple). f is called
nilpotent if there exists a natural number n such that f™ = 0.

Examples: Any diagonal matrix (operator) is diagonalizable. Any diagonaliza-
ble matrix (operator) is semisimple. A zero matrix (operator) is obviously nilpo-
tent. Also, every upper-triangular (or lower-triangular) matrix A of order n with
only zeros on the diagonal is nilpotent, since its characteristic polynomial is x”
whence A™ = 0 (see Fact 4 below).

Definition 9. Let Pi(z), Px(z),..., P.(z) € K[z]. The greatest common divi-
sor (gcd) of Py(x),..., Py

(x) is a monic polynomial of the greatest possible degree
that divides each P;(x). Pi(x),..., P.(x) are called coprime if their gcd equals 1.

Examples: Pi(z) =2z —4, Py(z) = (20 —4)%, P3(z) = 2—3 € R[z]. Then ged
of Pi(z), Po(x) is © — 2 and Pi(z), P2(x), Ps(x) are coprime. Note that ged is
unique and can be found e.g. by the Euclidean Algorithm (see e.g. [1, Chapter V,
Theorem 2]).

The following facts will be given exactly in the form needed for further consi-

derations, however some of them are more general.

Fact 1. If f,g € End(V), fg = gf and P(z) € K|z], then gP(f) = P(f)g. In
particular, Q(f)P(f) = P(f)Q(f) for every polynomial Q(x) € K|[x].

Remark: The proof is straightforward.

Fact 2. If Pi(z), P2(x),...,P-(z) € Kl[z] are coprime polynomials, then there
T
exist polynomials Q1(x), Q2(x),...,Qr(z) € K[z] such that Y P;i(x)Q;(x) = 1.

i=1

Remark: ged of two polynomials can be expressed as their ”linear” combination

by the Inverse Euclidean Algorithm (the proof is similar to that for integers). Since
gcd(Py (), .., Pr(z)) = ged(ged(Pri(x),. .., Pr—1(x)), P-(x)), the result for every
finite number of polynomials follows by induction. Fact 2 is a special case of that.
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Fact 3. Let K be a perfect field, P(x) € K[z]| and let L be a root field for P(x)
over K. Then L is a Galois extension of K.

Remark: Follows from [1, Chapter VII, Theorem 4] and [1, Corollary, p.190].
Fact 4 (cf. Cayley-Hamilton theorem). If f € End(V) then xs(f) = 0.
Remark: For the proof see e.g. [1, Chapter XV, Theorem 8§].

B; and for each i A;, B; have

n n
=1

Fact 5. Let A, B € M,(K). IfA= @ A;, B=
=1

=

7

the same order, then A+ B = @ (4; + B;) and AB = @ A;B;.

i=1 =1
Remark: Obtanaible by straightforward calculations.

Fact 6 (cf. Jordan normal form). If A € M, (K) and K contains all eigenvalues

of A, then A has a Jordan normal form, which is unique up to the order of Jordan
blocks.

Remark: For the proof see e.g. [1, Chapter XV, §3].

Fact 7. A difference of commuting nilpotent (respectively: semisimple) operators
is nilpotent (respectively: semisimple).

Proof. Let f,g € End(V), f* =0, g™ = 0 for some natural n,m and fg = gf.
Then, by binomial theorem, we obtain

(f =g = %ﬂ <n " m> (—1)igtfmtn=i =

‘ 7
1=0

n - n+m 1,1 em—i m = n+m i, i—m pmtn—1
=f Z( . )(—Ugf +9m Y ( . )(—1)9 f =0
=0 i=m+1

so f — g is nilpotent. For the semisimple case see e.g. [3, Lemma 6.1.3]. O

Fact 8. If f € End(V) is nilpotent, then xs(z) = 2™V, Consequently, the only
operator that is both nilpotent and semisimple is the zero operator.

Proof. If f is nilpotent, then f™ = 0 for some n. Therefore the minimal polynomial
pr(x) divides 2™ (see e.g. [1, Chapter XV, §3]) and hence p¢(z) = 2™, m < n
(since factorization in K[z] is unique, see e.g. [1, Corollary, p. 121]). The irredu-
cible factors in the characteristic and minimal polynomials of f are the same (see
e.g. [1, Corollary, p.402]) whence the only eigenvalue of f is 0 and its multiplicity
equals dim V', that is x¢(z) = x4mV Hence f has a Jordan normal form, a ma-
trix representation of which, J say, has only zeros on the diagonal. If f is also
semisimple, J has to be diagonal, whence J = 0 and consequently f = 0. ]
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3. Jordan-Chevalley decomposition — facts & proofs

We shall now discuss the existence of the Jordan-Chevally decomposition.

Definition 10. Let A be a linear operator on a finite-dimensional vector space
(respectively: a square matriz) over a field K and suppose that there exist a pair of
commuting operators (respectively: square matrices) — semisimple As and nilpotent
A, —such that A = A+ A,,. Then Ay is called the semisimple part of A, A, is
called the nilpotent part of A and A = As+ A, is called the Jordan-Chevalley
decomposition of A.

Theorem (Jordan-Chevalley decomposition theorem). Let f be a linear
operator on a finite-dimensional vector space V' over a field K.

If K 1is perfect, then there exists exactly one pair of commuting operators —
semisimple fs and nilpotent f, — such that f = fs+ fn.

Proof. The proof organized as follows: we first prove the statement under assump-
tion, that K contains all roots of x s(x), which is done in a few steps. Namely, we
start with constructing an operator fs and showing it is semisimple, then we show
that f — fs is nilpotent and commutes with f,, and the last step is to prove the
uniqueness. Finally, we prove the statement in general.

1. Construction of f,. Suppose that K contains all roots of the characteristic
polynomial xf(z) of f. Thus there exist pairwise distint elements A, Ag, ..., A\, €

T
K and ni,na,...,n, € Nsuch that > n; = dimV and
i=1

T

xs(a) =[] —x)m. (1)

i=1
For each i consider the product of all but i-th factors in x s (z), that is [] (z—Ag)™*.

ki
These polynomials have no common factor of degree > 0, which means that they

are coprime. Thus (Fact 2) there exist polynomials Q;(z), ¢ = 1,2,...,r such that

r

S Qi@ [[@ -2 | =1. (2)

i=1 ki

To simplify the notation let

Poi= Qi) [[(f = MId)™, i=1,2,...,r (3)
ki
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and we define .
fs = Z)\’LPZ (4)
i=1

2. Semisimplicity of f;. To prove that fs is semisimple we first show that
V=PVvi=@Pr(V) where V;:={ve V| (f-\Id)"(v)=0}. (5)
i=1 i=1

We shall do it by proving that V = @ P;(V) and P;(V) =V; for each i.
i=1
Indeed, the Cayley-Hamilton theorem (Fact 4) states that

xr(f)=0 (6)
so from (3) (f = Aild)" Pi=Qi(f)xs(f)=0fori=1,2,...,r , which means that
P(V)CVy, i=1,2,...,1. (7)

Moreover, from (2) and (3) we have

Id=> P (8)
i=1
soV=Id(V)=> P(V)C > V; CV, whence
i=1 i=1
V=3 BV)=) V. 9)
i=1 i=1

Now we show that Y P;(V) is direct. From (3) it follows that if ¢ # j then
PP = Q(NQi(f) TI (f — MIdy™ xs(f) 50 (6) yields

k#i,5
PiP,=0,i#j i,j=12 . .r (10)
and if we multiply both sides in (8) by P; we obtain
,
Pi=> PP =P}, j=12,..,r (11)
i=1

Now, fix j and suppose that v € P;(V) N ( > R-(V)) that is
i#]

v:Pj(vj):ZPi(vi) for some wy,v2,...,v. € V. (12)
i
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Multiplying both sides of the latter equality by P; for each j and applying (10)
gives Pf(vj) = > PjP;(v;) = 0, thus (11) and (12) yields v = Pj(v;) = P?(v;) =
i#]
0. So P;(V)n (Z Pi(V)) = {0y} for every j = 1,2,...,r, which means (by
i#]

,
Definition 5) that V = @ P;(V).
i=1
To show the directness of > V; it is enough to show that V; = P;(V) for each

j=1,2,...,7r. So fix j and suppose v € V}, that is (f — A;Id)"™ (v) = 0. Then (3)
T
implies that P;(v) = 0 for ¢ # j so from (8) we have v = Id(v) = ) P;(v) = P;(v)
i=1
which means that V; C P;(V'). Together with (7) it gives

P(V)=V;={veV|(f-NId)™(v)=0}, j=1,2,...,r (13)

and finishes the proof of (5).
Now, take any basis in each V;, say

B; = (bi1,bia, .-, bis;), s i =dim(V;), i=1,2,...,7 (14)
According to (5), B = (B1, Bz, ..., B;) is a basis in V. Since (10) and (11) gives
Pi(v)=0 ifve P(V), j#i P,(v) =v if ve P(V), (15)
from (4) and (13) we get
r
fs(vi) = Z)\iPi(vi) =Nvi, v,ieV,i=12...,m (16)
i=1
whence in particular
Folbin) = Nbaw,  i=1,2,...m k=1,2,.... s (17)
so fs is diagonal with respect to B (thus semisimple).
3. Commutativity of f; and f — f,. If we take
fo=f—F (18)
then by (4) fs, fn, f are polynomials of f and (Fact 1) we get

fsfn:fnfsa ffs:fsf (19)

so in particular fs, f, commute.
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4. Nilpotency of f— fs. On account of (16), (18) and (19), from binomial theorem
we obtain

WEV N 3wy = (%) = (7= £)¥(w) = 3 () YR ) =

N k
- (]Z) YR NI () = (f = Xd)™ (v:) = 0. (20)
k=1

T
Moreover, by (9) every element v € V can be written as v = > v; for some v; € V;
i=1
so if only N > max(n;) > n;, i =1,2,..,r, then

r

voeV ()N =Y (Xu) =D U w) =0 e

i=1 i=1

which means that (f,)Y =0, so f, is nilpotent as required.

5. Uniqueness. Thus there always exists a decomposition of f given by (4) and
(18). To show the uniqueness assume that there exists another pair of commuting
operators — semisimple g5 and nilpotent g,, — such that fs+ f, = f = ¢gs + gn- Let

By definition of g, we have gsf = gs(gs + gn) = 92 + gsgn = 92 + gngs = f9s
and similarly, for g, we get gnf = gn(gs + gn) = (gs + gn)gn = fgn. Therefore g,
and g, commutes with every polynomial of f (Fact 2), in particular with fy and
fn- Thus fs — gs is semisimple and g,, — f,, is nilpotent (Fact 7), so by (22) m is
both nilpotent and semisimple, whence it has to be a zero operator (Fact 8) and
consequently fs = gs, fn = gn, which provides the unigeness.

6. The general case. To simplify the notation we shall carry out this part of the
proof using matrices instead of operators. Note that if we take A to be a matrix
representation of f, then all the below can be rewritten for f and all the above
can be rewritten for A.

So, if A € My (K) (n=dimV) and K contains all roots of x4(z), then there
exists a unique pair of commuting matrices — semisimple Ay and nilpotent A4, —
such that A = A; + A,,. Moreover, they are polynomials of A, that is A; = S(A4),
A, = N(A) for some S(z), N(z) € K[z]. Also, we may assume these polynomials
have degree smaller than the degree of the minimal polynomial p4(z). Indeed,
otherwise we can divide both S(z) and N(z) by pa(z) obtaining

S(x) = R(x)pa(z) + S(x), N(x) =T(x)pa(r) + N(z

~

)
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where both S(x) and N(x), being remainders, have degree smaller than p4(z). By
definition p4(A) = 0 whence

S(A) = R(A)pa(A) + 5(A) = 5(A), N(A) = T(A)pa(A) + N(A) = N(A)

so although S(z), S(z) (respectively N(z), N(x)) may differ, they define the same
operator Ay (respectively A,,).

Now, let A € M, (K) and let L be a root field of x4(z) over K. In particular
K C L, whence A € M,,(L) and according to all the above there exist S(z), N(z) €
L[z] such that deg(S(x)),deg(N(x)) < deg(pa(z)), S(A) is semisimple, N(A) is
nilpotent, S(A)N(A)=N(A)S(A) and A= S(A)+N(A). To show that this is the
required decompositon of A we only have to prove that S(z), N(z) € K|z].

Since K is perfect, L is a Galois extension of K (Fact 3). It means that K is
a fixed field of a Galois group G(L/K). Let o be any element of G(L/K), that is
o is an automorphism on L such that o(k) =k for every k€ K. Then o induces an
operator 7 on M, (L) in the natural way, namely

7([zi5]) = [o(zi5)]- (23)

Observe first that 7 is an endomorphism. Indeed, since ¢ is an automorphism, for
X =[], Y = [ys5] € Mpn(L), o € L we have

(X +Y) =7([zi; +yi5]) = [0(xij +yij)] = [o(2i5) + 0 (yi;)] =

= [o(xij)] + [o(yi;)] = 7(X) + 7(Y),
a (Z xzk?ﬂc])] = [Z U(xlk)a(ykj)] = T(X)T(Y)a
k=1 k=1
= 7([awy;]) = [o(awi;)] = [o(a)o(2i;)] = o(a)7(X). (24)

Both A and I are over K and o fixes K elementwise, so 7(4) = A, 7(I) = I and
n .
(24) implies that for every polynomial P(z) = po + > p;z* € L[z] we have

i=1
n

T(P(A)) = o(po)l + Za(pi)A- (25)

i=1

Now, because A = S(A) + N(A), we have
A=7(A) =7(5(A) + N(4)) = 7(5(4)) + 7(N(4)).
N(A) is nilpotent, that is (N(A))™ = 0 for some m and therefore (24) implies

(T(N(A)™ = 7 ((N(A))™) = 7(0) = 0
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so T(N(A)) is also nilpotent. Moreover, S(A) (which is over L) is semisimple
and L contains all roots of xa(x), which (because of (16)) means that S(A) is
diagonalizable over L, that is there exists a diagonal matrix D € M, (L) and an
invertible matrix C' € M,,(L) such that S(A) = CDC~! and (24) implies

7(S(4)) = T(CDC™) = 7(C)r(D)(r(C)) ™.

Since 7(D) is still diagonal (as 0(0)=0), 7(S(A)) is diagonalizable, whence semi-
simple. By assumption the decomposition of A is unique hence 7(S(A))—S(4)=0,
m
T7(N(A))—N(A)=0. In other words, if S(x):= " s;2°, then
i=0

T(x):= Za(si)xi - Z 5wt = Z(O‘(Si) — ;)7

is such that T(A) = 0. But by assumption deg(T(z)) < deg(S(x)) < deg(pa(x))
and pa(z) is a polynomial of the smallest possible positive degree such that
pa(A) = 0 (Definition 3). Thus T'(z) has to be a zero polynomial, that is o(s;) = s;
for each ¢, which in turn means that s; are fixed points of ¢. Similarly, coefficients
of N(x), n;’s say, are also fixed points of o. But ¢ was an arbitrary automorphism
in G, so it follows that s;, n; lies in a fixed field of G(L/K), which is K, for each i.
Therefore S(z), N(z) € K[z], which finishes the proof for A and hence for f. O

Corollary 1. Let A be a square matriz over a perfect field K. Then there exist
exactly one pair of commuting matrices — semisimple As and nilpotent A, — such
that A = As; + A,. O

Observation 1. The theorem (and Corollary 1) states that the Jordan-Chevalley
decomposition always exists if a field is perfect. Moreover, I is semisimple over
any field, 0 is nilpotent over any field and I = I 4 0, so the decomposition may
exists even over non-perfect fields. But it may not exist either.

Indeed, let K be the smallest extension field of Zy containing 72 for some T
0 717

0
Then xa(z) =22 —T? = (x = T)(x +T) = (z — T)? (since —1 = 1 in Zy). This
polynomial is irreducible over K (since T' ¢ K and the factorization is unique)

transcendental over Zs. In particular T' ¢ K. Now take A = € My(K).

and has a double root (over Z(T) which is an extension field of K'). By definition
it means that K is not perfect. Note that A is not semisimple. Indeed, otherwise
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there exists an invertible matrix C' = Z 2 € Z2(T) such that
a c 0o 7*| | T 0 a c
b d||1 0| |0 T||bd

whence in particular ¢ = a7, d = bT and thus ad — bc = 0, a contradiction.

Now, assume, contrary to our claim, that the Jordan-Chevalley decomposition
of A exists, that is A = S+ N, with S € Ms(K) semisimple, N € Ms(K) nilpotent
and SN = NS. Since A is not semisimple, A # S whence N # 0. Moreover,

a c

NA=NS+N?=S8N+N?=AN, sofor N = b d , a,b,c,d € K we have
a c¢ 0 7?2 10 T2 a c¢
b d 1 0 1 0 b d
o . . a bT?
and hence (by multiplying and comparing matrices) N = b ,a,b e K.
a

Since N is nilpotent, xn(z) = 22 (Fact 8) that is 2% = yy(z) = (x —a)? —b*T? =
2?4 a? —b*T? and so a® — b2T? = 0. Hence a is a root of 2% —b2T? = (z —bT)?, so
a = bT. Since T ¢ K, this is possible only if a = b = 0 and consequently N = 0,
a contradiction. Thus the Jordan-Chevalley decomposition of A does not exist.

Observation 2. Parts 1 and 2 of the proof of the Theorem can be pursued in
more compact way (like e.g. in [3]). Namely, if x ¢(z) = [[(z— i)™, then from the
structural theorem for modules over principal ideal rings V = @ Ker(f — \;Id)™
(which is the first equality in (5)). Moreover, each of these subspaces is invariant
under f (that is asserted by the fact that P;’s are actually projection operators
(by (11)) and follows from the second equality in (5)) and f acts on each as
a multiplication by A; (which we show in (16)). Since (x — A\;)™, (x — \;)™ are

coprime for i # j, then the system of congruences’

P(z)=X (mod (z — X\)™) (26)

has a solution by the Chinese Remainder Theorem?and fs = P(A) (P(x) given
in (4) satisfies this system of congruences; the difference is that P;(x) determined
by ChRT satisfy the congruence > P;(z) = 1 (mod xa(x)) rather than equality

Hf(z)=g(z) (mod h(zx)) PN h(z)|(f(z)—g(x)); for details see e.g. [1, Chapter II, §1].

*Works over any commutative ring, e.g. Z; for more details see e.g. [1, Chapter 11, §2].
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(2), which is of no importance since it is no needed explicitly and gives the same
operator fs). Thus our proof is essentially the same but we use basic facts only.

Definition 11. Let A = [a;;] € M,,(K). By the diagonal part of A we mean
a; for i =3,

the matriz diag(A) := [ci;] € My (K), where cij = { J
0 fori#j.

1 0

0 4 |

Corollary 2. Let K be a perfect field, A € M,(K) and L be a root field of
Xa(z) over K. Therefore there exist a Jordan matriz J € M, (L) and an invertible

matriz C' € M,,(L) such that A = CJC™'. Let D := diag(J), N :=J — D. Then
CDC~ ' CNC™' € M,(K) and

1 2

Example: Let A = . Then diag(A) =

A=CDC ' +CONC™! (27)
is the Jordan-Chevalley decomposition of A.

Proof. Since L contains all roots of xa(z), a Jordan normal form of A exists
(Fact 6). If D = diag(J), then D is diagonal and the only nonzero elements of
N = J—D are the 1’s lying on the superdiagonal of J. Thus NV is upper-triangular
with zeros on the diagonal, which means that it is nilpotent. Also, the diagonal of
D contains all roots of x4(x) and in that case we may choose the basis B given by
(14) in such a manner that columns of C are the vectors in B (in different order
maybe).

Now, suppose J = é J; and for each Jordan block J; we have J; = D; + Nj,

i=1

T

”
where D; := diag(J;), N; := J; — D; whence D = @ D;, N = @ N,. Now, if J;

=1 i=1
corresponds to A;, then
Ai j=1i+1
D;N; = N;D; = [c;j], where c¢;j =14 " J ’
0 j#i+1.

Therefore DN = @ D;N; = @ N;D; = ND and hence

i=1 =1

(CDC™H(CNC™') = C(DN)C' =C(ND)C™* = (CNC™H(CDC™1).

Moreover, C DC~! is semisimple (since D is diagonal), CNC~! is nilpotent (since
N™ =0, then (CNC~1)™ = CN™C~! = 0). This means that CDC~!, CNC~!
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are precisely S(A), N(A), respectively, given in 6-th part of the proof of the The-
orem, whence both belong to M, (K). Finally,

A=CJC'=C(D+N)C'=CcDC™ ' +CNC™!

so it is a Jordan-Chevally decomposition of A as required. O

Remark. The above proof is in fact another version of the existence part of the
proof of the Theorem (but it does not preserve uniqueness).

Observation 3. Let A be a linear operator on V' (or a square matrix) over K.
0 is both nilpotent and semisimple and commutes with every matrix. So if A is
semisimple (respectively nilpotent), then A = A + 0 (respectively A = 0+ A) is
the Jordan-Chevalley decomposition of A.

4. How to determine the decomposition?

We shall focus on determining the Jordan-Chevalley decomposition over per-
fect fields. If f is a linear operator, take A to be its matrix representation with
respect to the standard basis. Thus we assume that a square matrix A over some
perfect field is given as a start point and our aim is to evaluate Ay, A,.

Case 1: Take a look at A. If A is semisimple, then A; := A, A, :=0.If A
is nilpotent then A, :=0, A, := A.

Sometimes it is enough to take a look at A to determine whether it is semisimple,
for instance if

1. A is diagonal (by definition);

2. A is triangular (upper- or lower-) with pairwise distinct elements on the
diagonal (since then J is diagonal);

3. Ais adirect sum of a finite number of semisimple matrices (if A=€P A; and
A = C;D;C; L over some extension field of K with D; diagonal for each 1,
then A = CDC~!, where C=@ C;, D=@ D;, C~'=@ C; * by Fact 5).

Moreover, if A upper-triangular or lower-triangular with only zeros on the diagonal
then A is surely nilpotent.

If this is not the case, then consider
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Case 2: Determine y4(z).

Note that if ya(x) is irreducible over K, then (since K is perfect) all roots of
Xxa(z) are distinct, so J is diagonal. The same situation is if x4 (z) is a product of
pairwise distint irreducible factors over K, since then J is a direct sum of diagonal
matrices. In either case A is semisimple and A := A, A,, := 0.

If this is still not the case, then consider the general

Case 3: Determine A, A,,.
The previous section provides a few methods for evaluating Ay, A,, namely

Method 1, which follows from the proof of the Theorem:
T
Step 1 Factorize the characteristic polynomial x4(z) = [] (z — X\;)™.
i=1

T
Step 2 Take W;(z):= [] (x—Ag)™ and find Q;’s such that > Q;(z)W;(z)=1.
k#i i=1

It can be done by the repeated application of the Inverse Euclidean Algorithm.
Also, we may assume that deg(Q;(z)) < n; (see e.g. [1, Chapter V, Theorem 8]),

n;—1 .
s0 Qi(z) = > ¢ija’ for each i and it is enough to determine the coefficients.
j=1
T
Step 3 Take As := > MQi(A)W;(A), A, := A — A,.
i=1
Method 2, which follows from Observation 2:

T
Step 1 Factorize the characteristic polynomial x4(z) = [] (z — \;)™.
i=1
Step 2 Determine any polynomial P(x) satisfying the system of congruences

P(z) =\ (mod (x — \;)™), i =1,2,..,r by the Chinese Remainder Theorem
Step 3 Take As := P(A), A, :=A— As

Method 3, which follows from Corollary 2:
T
Step 1 Factorize the characteristic polynomial x4(z) = [] (z — Xi)™.

=
Step 2 Determine a Jordan matrix J and and invertible matrix C such that
A=CJC .
Step 8 Take D := diag(J), N:=J —D and A, := CDC~1, A, :=CNC™!

Note that if A has only two eigenvalues, then Methods 1 and 2 works the same.
In general, usually, Method 2 works faster than 1 and Method 3 is the slowest.

Finally, observe that if A = @ A; and A; = S; + N; is the Jordan-Chevalley
decomposition of A; for each i, then A = @ S; + @ N; is the Jordan-Chevalley
decomposition of A (which follows from Corollary 2). So can say we have
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The general method
Step 0 Write A as a direct sum of some A;, i = 1,2, ..,a (possibly with a = 1)
Steps 1-8 For each A; use one of the three methods given above to determine
the semisimple part A;q and the nllpotent part A;,.

Step 4 Take Ay := @ Ais, Ap = @ Ain

i=1 =1

Now we shall give a few examples to show how it works.

Example 1. Let K =C, V = C* and

00 00
e 4 0 00
1 6 00
2 0 10 O

A is lower-triangular, whence nilpotent, so A = 0 + A is the Jordan-Chevalley
decomposition of A.

Example 2. Let K = Zs3, and

0 0 2
A=11 0 1
010

Since ”taking a look” at A does not give a clue, we evaluate the characteristic
polynomial y4(x) = det(xld — A) = x® + 22 + 1. It has no roots in Zs since
x4(0) = xa(1) = xa(2) = 1, and therefore x 4(z) has no factor of degree 1 over
Zs. So it cannot have a factor of degree 2 either, that is x 4 (z) is irreducible. Hence
A is semisimple and A = A + 0 is the Jordan-Chevalley decomposition of A.

Example 3. Let K =R and

b

I
R e = L
oo ook oo
cC oo oo oo
oo wo o oo
oo oo oo
I I = = I = I =)

O O O O O
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1 -1
1

5 1

aA:
2 0 5

3
Then A= A;, where Ay = . Thus
i=1

3

6
0 |,As3=
3

4 9

0 2

0 0
it is enough to consider each A; separately. x 4, (r) = (z—1)?+1 is irreducible over
R, so A; is semisimple and S; = Ay, N7 =0. Ay is also semisimple (having distint
elements on the diagonal), whence So = A, N; = 0. Az is a Jordan matrix, so
= (E; g , N3 0 . Thus A = é Si+ é N; is the Jordan-Chevalley

Ss =
0 0 i=1 i=1

decomposition of A.

Example 4. Let K =Q, V = Q% and

f(x1, 2, 3, T4, 5, x6) = (321,21 + 322,0, 23, 75, 326).

Then f is linear and its matrix representation with respect to the standard basis

1S

(3 1.0 0 0 0]
030000
4_|000 100
000000
000070
(0000 0 3]

Thus A is a Jordan matrix, whence A; = diag(A), A, = A— A, and therefore

f _ f +f Where fs(x17x27x3,$4,$5,$6) = (3x173x25070)7$5)3$6)7
fn($1,$2,x3,I4,$5,$6) - ($1,0,07$3,0,0).

Example 5. Let K =R and

0 -1 0 0
A 1 0 1 0
0 0 -1
0 01 0

Then xa(z) = (2% + 1)2.

None of the tricks will work, so we have to go through the whole process (e.g.
Method 1). (22 +1)2 = (z+14)%(x — i)?, so we have to find Q1 (), Q2(x) such that
Q1(x)(z — )% + Q2(z)(x +i)? = 1. By the Euclidean Algorithm we have

1 1
2?42z —1=1-(2? -2z —1)+4dix, 2°>-2ix—1= (_Zm_ﬁ)m_l
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hence the Inverse Euclidean Algorithm yields
1 1
= (—ch - 5) dix — (2? — 2ix — 1) =
1 1
= (Zm — 5) <(:r2 + 2ixz — 1) — (2? — 2ix — 1)> — (2% =2z —1) =

1 1 1 1
= (—Zix - 5) (2% + 2ix — 1) + (Zix — 5) (z% — 2ix —1).
Therefore we take Q1 (z) = (%m - %) , Qa(x) = (—%ix - %) Now simplify:
1 1 1 1 1
—i(x —i)? <Zzz - 5) +i(x +1)? <Zzz - 5) = 5333 + gac

Thus As = %A3 + %A, SO

0 -1 0 3 00 0 —%
A:10§0+00§0
0 0 0 -1 000 0
0 0 1 0 000 0

and this is the Jordan-Chevalley decomposition of A.
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Omoéwienie
Operator liniowy na przestrzeni wektorowej nad danym cialem K nazywa si¢

polprostym, jesli jest diagonalizowalny nad pewnym rozszerzeniem tego ciala. Ope-
rator nazywa sie nilpotentnym, jesli pewna jego potega jest operatorem zerowym.
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W niektérych przypadkach tatwo roztozyé operator na sume operatoréw polpro-
stego i nilpotentnego, ale z reguly nie sa one przemienne.

Jedli jednak cialo K jest doskonale, to rozklad dowolnego operatora na sume
dwdéch przemiennych operatoréw — polprostego i nilpotentnego — zawsze istnieje
i jest jednoznaczny (fakt ten najczesciej nazywa sie twierdzeniem o rozkladzie
Jordana-Chevalleya). Rozklad ten jest istotny np. w badaniu algebr Liego.

W gléwnej czesci artykulu (rozdzial 4) zostaly omdwione réznego rodzaju
metody wyznaczania postulowanego rozktadu, na podstawie wynikéw z rozdzia-
tu 3, dla ktérych punktem wyjscia jest dowdd twierdzenia o rozkladzie Jordana-
Chevalleya. Warto zauwazy¢, ze do zrozumienia rozwazan, przeprowadzonych
w pracy, wystarczy podstawowa wiedza z zakresu przestrzeni liniowych, cial oraz
pierscieni wielomianéw (niektére mniej podstawowe fakty i definicje zostaly przy-
pomniane w rozdziale 2).






