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ON JORDAN-CHEVALLEY DECOMPOSITION

Summary. Expressing a linear operator f on a finite-dimensional vec-
tor space over any field K as a sum of two commuting operators – semisim-
ple and nilpotent – is called the Jordan-Chevalley decomposition of f . It is
known that this decomposition exists for an arbitrary f if only K is perfect.
In this paper we give some methods for determining the decomposition.

O ROZKŁADZIE JORDANA-CHEVALLEYA

Streszczenie. Zapis operatora liniowego działającego na skończenie
wymiarowej przestrzeni wektorowej nad dowolnym ciałemK w postaci sumy
dwóch przemiennych operatorów – półprostego i nilpotentnego – nazywa-
my rozkładem Jordana-Chevalleya tego operatora. Wiadomo, że jeśli K jest
ciałem doskonałym, to taki rozkład istnieje dla dowolnego operatora. Celem
artykułu jest omówienie metod wyznaczenia postulowanego rozkładu.

1. Introduction

If a matrix is upper-triangular, it is easy to decompose it into a ”diagonal
part” and ”strictly upper-triangular part” (which is in particular nilpotent). For
instance
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[

1 2
0 1

]

=

[

1 0
0 1

]

+

[

0 2
0 0

]

.

It is obvious that the matrices on the right commute. But this is not always so,
for instance

[

1 2
0 3

]

=

[

1 0
0 3

]

+

[

0 2
0 0

]

,

but the matrices on the right do not commute. Since each linear operator on
a vector space of dimension n can be represented by a square matrix of order n, the
above decompositions can be also viewed as decompositions of linear operators.
Diagonality (or, in general – semisimplicity) and nilpotency of summands can
provide some profits in examining the properties of a matrix itself. However, to
derive really nice and interesting properties, one usually needs commutativity of
the summands, like in the binomial theorem (for finding powers of a sum).
Expressing a linear operator f on a finite-dimensional vector space over any

field K as a sum of two commuting operators – semisimple and nilpotent – is
called the Jordan-Chevalley decomposition of f (or Jordan decomposition). This
decomposition can be easily described if f has so-called Jordan normal form (which
explains the first part of the name), but it may exist even if the Jordan normal form
does not. The most general result (known as the Jordan-Chevalley decomposition
theorem) guarantees the existence of the unique Jordan-Chevalley decomposition
if only K is perfect. Thus it plays a very important role in examining Lie algebras,
leading eventually to the corresponding decompositon of every element in finite-
dimensional Lie algebras in two main cases – the semisimple Lie algebras over
algebraically closed fields of characteristic 0 (like C, examined by Claude Chevalley
(which explains the second part of the name), see e.g. [2] for further details)
and the restricted Lie algebras over perfect fields of prime characteristic (usually
called the Jordan-Chevalley-Seligman decomposition then). The Jordan-Chevalley
decomposition is also called Dunford decomposition (after Nelson Dunford, who
generalized it to Banach spaces) or SN decomposition (Semisimple & Nilpotent).
In this paper we focus on determining the decomposition. For the convenience

of the Reader we include Section 2, which is a collection of notions and facts crucial
for further considerations. However, we still assume the Reader is familiar with
the very basic concepts of linear algebra, fields and polynomial rings. In Section 3
we formulate and prove the Jordan-Chevalley decomposition theorem (our proof
is inspired by those in [2] and [3]) and point out some observations. Also, we
give an example of a matrix over a non-perfect field having no Jordan-Chevalley
decomposition, confirming that the perfectness of the field is crucial. Finally, in
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Section 4 we discuss a few methods (based on the results from Section 3) for
determining the Jordan-Chevalley decomposition and give some examples.

2. Preliminaries

Note that this section plays an informative role only – considering the topics
in details would exceed the scope of this paper. We refer the Reader to any book
on linear algebra, fields and polynomial rings (e.g. [1]) for further details.

Notions: From now onK will denote a field, V – a finite-dimensional vector space
over K, End(V ) – the ring of linear operators (endomorphisms) on V , K[x] – the
ring of polynomials (in x) over K and Mn(K) – the ring of square matrices of
order n over K. To refer to the elements of a given matrix A we write A = [aij ].
The image of f ∈ End(V ) will be denoted by f(V ), the identity operator by Id,
the identity matrix (of any order) by I and the zero operator or matrix by 0.

Definition 1. (i) A field L is called an extension field of K if K is a subfield
of L. An extension field L of K is called finite-dimensional if the dimension of

L (viewed as a vector space over K) is finite.

(ii) Let L be an extension field of K. a ∈ L is called algebraic over K if
it is a root of some polynomial over K, otherwise it is called transcendental

over K. L is called an algebraic extension field of K if every element in L is

algebraic over K. The smallest extension field of K containing all roots of a given

polynomial P (x) ∈ K[x] is called a root (or splitting) field of P (x) over K.
(iii) Let L be an algebraic extension field of K and G – a group of automor-

phisms σ of L that fix each k ∈ K (that is σ(k) = k). A set of all elements in L
fixed by each automorphism in G forms a field called the fixed field for G and it

contains K. L is called a Galois extension of K if K itself is the fixed field of

G. Then G is called the Galois group of L over K and is denoted by G(L/K).

Examples: (i) R is a subfield of C and the geometrical representation implies
that C ∼= R2 (as vector spaces). Hence C is a finite-dimensional extension of R.
(ii) C is also an algebraic extension of R, since a+bi is a root of (x − a)2 + b2.
In particular, C is a root field of x2 + 1 over R. π is transcendental over Q. Note
that transcendental over any field K always exists and it it frequently used – e.g.
it is x we use to define K[x]. (iii) C is a Galois extension of R, because one of the
automorphisms of C fixing R elementwise is conjugation and the set of elements
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it fixes is exactly R. Note that (iii) is not the standard definition of a Galois
extension – usually it is a theorem (see e.g. [1, Chapter VIII, Theorem 1]).

Definition 2. K is called perfect if every irreducible polynomial over K decom-

poses into distinct linear factors (over some extension field of K).

Examples: Every field of characteristic 0 is perfect. If a field has a prime
characteristic p, then it is perfect if and only if every element is a p-th power of
some element. In particular, every finite or algebraically closed field is perfect.

Definition 3. (i) Let f ∈ End(V ). Then ϕf : K[x]→ End(V ) defined as

ϕf (a0 + a1x+ · · ·+ anxn) = a0Id+ a1f + · · ·+ anfn

is a homomorphism of rings. Its every value, for a given polynomial P (x) deno-
ted by P (f), is called a polynomial of f. ρf (x) ∈ K[x] is called the minimal
polynomial of f if it is monic of the least possible degree such that ρf (f) = 0.
(ii) Let A ∈Mm(K). Then ϕA : K[x]→Mm(K) defined as

ϕA(a0 + a1x+ · · ·+ anxn) = a0I + a1A+ · · ·+ anAn

is a homomorphism of rings. Its every value, for a given polynomial P (x) denoted
by P (A), is called a polynomial of A. ρA(x) ∈ K[x] is called the minimal
polynomial of A if it is monic of the least possible degree such that ρA(A) = 0.

Examples: For any K,V, f, A we have ϕf (x) = f, ϕA(x) = A, so f (resp.
A) is a polynomial of f (resp. A). Moreover, ρId(x) = x − 1, since Id 6= 0 and
ρId(Id) = Id − Id = 0. Similarly, ρI(x) = x − 1. Note that if A is a matrix
representation of f , then ρA(x) = ρf (x). Also, if f 6= 0 (A 6= 0) then the minimal
polynomial has a positive degree.

Definition 4. (i) Let A ∈Mn(K). Then χA(x) := det(xI − A) is a polynomial
over K called the characteristic polynomial of A. Roots of χA(x) are called
eigenvalues of A.

(ii) Let f ∈ End(V ). The characteristic polynomial of a matrix representation
of f with respect to every basis of V is the same and is called the characteristric

polynomial of f . It is denoted by χf (x). Its roots are called eigenvalues of f .

Examples: The characteristic polynomial of a zero matrix of order n is xn, the
characteristic polynomial of the identity matrix of order n is (x − 1)n. Both have
only one eigenvalue, 0 and 1, respectively. Note that deg(χA(x)) is equal to the
order of A, whence deg(χf (x)) = dimV . Sometimes the characteristic polynomial
is defined as det(A− xI).
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Definition 5. Let V be a vector space over K and let V1, V2, . . . , Vr be its sub-

spaces. We say that V is a direct sum of subspaces V1, V2, . . . , Vr and write

V =
r
⊕

i=1

Vi if V =
r
∑

i=1

Vi and Vi ∩
(

∑

k 6=i

Vk

)

= {0V } for each i = 1, 2, . . . , r.

Example: Let V = R2, V1 = {(a, 0)| a ∈ R}, V2 = {(0, b)| b ∈ R}. Then

V =
2
⊕

i=1

Vi since V1+V2 = {v1+ v2| v1 ∈ V1, v2 ∈ V2} = V and V1 ∩V2 = {(0, 0)}.

Definition 6. (i) Let A = [aij ] ∈Mm(K), B = [bij ] ∈Mn(K).

Then C = [cij ] ∈ Mm+n(K) such that cij =















aij 1 ¬ i, j ¬ m

bi−m,j−m m < i, j ¬ m+ n

0 otherwise
is called a direct sum of A,B and denoted by A⊕B.

(ii) A direct sum of any finite number of square matrices, A1, .., An say, is

defined in the standard inductive way and denoted by
n
⊕

i=1

Ai for short.

Examples:K = R (i) A = [−3] B =

[

1 1
4 5

]

. Then A⊕B =







−3 0 0
0 1 1
0 4 5






.

(ii) A1 = [7], A2 = [8], A3 = [1]. Then
3
⊕

i=1

Ai =







7 0 0
0 8 0
0 0 1






.

Definition 7. (i) For a ∈ K let maij :=















a i = j

1 j = i+ 1

0 otherwise

.

A square matrix Ja := [maij ] of any order is called a Jordan block (corresponding
to a). A direct sum of a finite number of Jordan blocks is called a Jordan matrix.

(ii) Let A ∈Mn(K). A Jordan matrix J ∈Mn(K) is called a Jordan normal
form of A if there exists an invertible matrix C ∈Mn(K) such that A = CJC−1.
(iii) We say that f ∈ End(V ) has a Jordan normal form if there exists

a basis of V with respect to which a matrix representation of f is a Jordan matrix.

Examples: (i) The identity matrix of any order n is a Jordan matrix since

I =
n
⊕

i=1

[1]. (ii) Each Jordan matrix is a Jordan normal form of itself (for C = I).

(iii) Id has a Jordan normal form (since its matrix representation with respect
to the standard basis is I). Note that elements lying on the diagonal of J are
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eigenvalues of A. Also note, that if A is a matrix representation of f (with respect
to the standard basis), J,C as in (ii), then columns of C are in fact vectors in the
basis with respect to which a matrix representation of f is J .

Definition 8. (i) A ∈Mn(K) is called diagonalizable if there exists a diagonal
matrix D ∈Mn(K) and an invertible matrix C ∈Mn(K) such that A = CDC−1.
A ∈Mn(K) is called semisimple if it is diagonalizable over some extension field
of K. A is called nilpotent if there exists a natural number n such that An = 0.
(ii) f ∈ End(V ) is called diagonalizable (respectively: semisimple) if any

matrix representation of f is diagonalizable (respectively: semisimple). f is called

nilpotent if there exists a natural number n such that fn = 0.

Examples: Any diagonal matrix (operator) is diagonalizable. Any diagonaliza-
ble matrix (operator) is semisimple. A zero matrix (operator) is obviously nilpo-
tent. Also, every upper-triangular (or lower-triangular) matrix A of order n with
only zeros on the diagonal is nilpotent, since its characteristic polynomial is xn

whence An = 0 (see Fact 4 below).

Definition 9. Let P1(x), P2(x), . . . , Pr(x) ∈ K[x]. The greatest common divi-
sor (gcd) of P1(x), . . . , Pr(x) is a monic polynomial of the greatest possible degree
that divides each Pi(x). P1(x), . . . , Pr(x) are called coprime if their gcd equals 1.

Examples: P1(x) = 2x−4, P2(x) = (2x−4)2, P3(x) = x−3 ∈ R[x]. Then gcd
of P1(x), P2(x) is x − 2 and P1(x), P2(x), P3(x) are coprime. Note that gcd is
unique and can be found e.g. by the Euclidean Algorithm (see e.g. [1, Chapter V,
Theorem 2]).

The following facts will be given exactly in the form needed for further consi-
derations, however some of them are more general.

Fact 1. If f, g ∈ End(V ), fg = gf and P (x) ∈ K[x], then gP (f) = P (f)g. In
particular, Q(f)P (f) = P (f)Q(f) for every polynomial Q(x) ∈ K[x].

Remark: The proof is straightforward.

Fact 2. If P1(x), P2(x), . . . , Pr(x) ∈ K[x] are coprime polynomials, then there

exist polynomials Q1(x), Q2(x), . . . , Qr(x) ∈ K[x] such that
r
∑

i=1

Pi(x)Qi(x) = 1.

Remark: gcd of two polynomials can be expressed as their ”linear” combination
by the Inverse Euclidean Algorithm (the proof is similar to that for integers). Since
gcd(P1(x), .., Pr(x)) = gcd(gcd(P1(x), . . . , Pr−1(x)), Pr(x)), the result for every
finite number of polynomials follows by induction. Fact 2 is a special case of that.
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Fact 3. Let K be a perfect field, P (x) ∈ K[x] and let L be a root field for P (x)
over K. Then L is a Galois extension of K.

Remark: Follows from [1, Chapter VII, Theorem 4] and [1, Corollary, p.190].

Fact 4 (cf. Cayley-Hamilton theorem). If f ∈ End(V ) then χf (f) = 0.

Remark: For the proof see e.g. [1, Chapter XV, Theorem 8].

Fact 5. Let A,B ∈Mn(K). If A =
n
⊕

i=1

Ai, B =
n
⊕

i=1

Bi and for each i Ai, Bi have

the same order, then A+B =
n
⊕

i=1

(Ai + Bi) and AB =
n
⊕

i=1

AiBi.

Remark: Obtanaible by straightforward calculations.

Fact 6 (cf. Jordan normal form). If A ∈ Mn(K) and K contains all eigenvalues
of A, then A has a Jordan normal form, which is unique up to the order of Jordan

blocks.

Remark: For the proof see e.g. [1, Chapter XV, §3].

Fact 7. A difference of commuting nilpotent (respectively: semisimple) operators

is nilpotent (respectively: semisimple).

Proof. Let f, g ∈ End(V ), fn = 0, gm = 0 for some natural n,m and fg = gf .
Then, by binomial theorem, we obtain

(f − g)n+m =
n+m
∑

i=0

(

n+m
i

)

(−1)igifm+n−i =

= fn
m
∑

i=0

(

n+m
i

)

(−1)igifm−i + gm
n+m
∑

i=m+1

(

n+m
i

)

(−1)igi−mfm+n−i = 0

so f − g is nilpotent. For the semisimple case see e.g. [3, Lemma 6.1.3]. �

Fact 8. If f ∈ End(V ) is nilpotent, then χf (x) = xdimV . Consequently, the only
operator that is both nilpotent and semisimple is the zero operator.

Proof. If f is nilpotent, then fn = 0 for some n. Therefore the minimal polynomial
ρf (x) divides xn (see e.g. [1, Chapter XV, §3]) and hence ρf (x) = xm, m ¬ n
(since factorization in K[x] is unique, see e.g. [1, Corollary, p. 121]). The irredu-
cible factors in the characteristic and minimal polynomials of f are the same (see
e.g. [1, Corollary, p.402]) whence the only eigenvalue of f is 0 and its multiplicity
equals dim V , that is χf (x) = xdimV . Hence f has a Jordan normal form, a ma-
trix representation of which, J say, has only zeros on the diagonal. If f is also
semisimple, J has to be diagonal, whence J = 0 and consequently f = 0. �
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3. Jordan-Chevalley decomposition – facts & proofs

We shall now discuss the existence of the Jordan-Chevally decomposition.

Definition 10. Let A be a linear operator on a finite-dimensional vector space

(respectively: a square matrix) over a field K and suppose that there exist a pair of

commuting operators (respectively: square matrices) – semisimple As and nilpotent

An – such that A = As+An. Then As is called the semisimple part of A, An is
called the nilpotent part of A and A = As+An is called the Jordan-Chevalley
decomposition of A.

Theorem (Jordan-Chevalley decomposition theorem). Let f be a linear

operator on a finite-dimensional vector space V over a field K.

If K is perfect, then there exists exactly one pair of commuting operators –

semisimple fs and nilpotent fn – such that f = fs + fn.

Proof. The proof organized as follows: we first prove the statement under assump-
tion, that K contains all roots of χf (x), which is done in a few steps. Namely, we
start with constructing an operator fs and showing it is semisimple, then we show
that f − fs is nilpotent and commutes with fs, and the last step is to prove the
uniqueness. Finally, we prove the statement in general.

1. Construction of fs. Suppose that K contains all roots of the characteristic
polynomial χf (x) of f . Thus there exist pairwise distint elements λ1, λ2, . . . , λr ∈

K and n1, n2, . . . , nr ∈ N such that
r
∑

i=1

ni = dimV and

χf (x) =
r
∏

i=1

(x− λi)ni . (1)

For each i consider the product of all but i-th factors in χf (x), that is
∏

k 6=i

(x−λk)nk .

These polynomials have no common factor of degree > 0, which means that they
are coprime. Thus (Fact 2) there exist polynomials Qi(x), i = 1, 2, . . . , r such that

r
∑

i=1



Qi(x)
∏

k 6=i

(x− λk)nk



 = 1. (2)

To simplify the notation let

Pi := Qi(f)
∏

k 6=i

(f − λkId)nk , i = 1, 2, . . . , r (3)
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and we define

fs :=
r
∑

i=1

λiPi. (4)

2. Semisimplicity of fs. To prove that fs is semisimple we first show that

V =
r
⊕

i=1

Vi =
r
⊕

i=1

Pi(V ) where Vi := {v ∈ V | (f − λiId)ni(v) = 0}. (5)

We shall do it by proving that V =
r
⊕

i=1

Pi(V ) and Pi(V ) = Vi for each i.

Indeed, the Cayley-Hamilton theorem (Fact 4) states that

χf (f) = 0 (6)

so from (3) (f − λiId)niPi=Qi(f)χf (f)= 0 for i = 1, 2, . . . , r , which means that

Pi(V ) ⊆ Vi, i = 1, 2, . . . , r. (7)

Moreover, from (2) and (3) we have

Id =
r
∑

i=1

Pi (8)

so V = Id(V ) =
r
∑

i=1

Pi(V ) ⊆
r
∑

i=1

Vi ⊆ V , whence

V =
r
∑

i=1

Pi(V ) =
r
∑

i=1

Vi. (9)

Now we show that
∑

Pi(V ) is direct. From (3) it follows that if i 6= j then
PjPi = Qj(f)Qi(f)

∏

k 6=i,j

(f − λkId)nkχf (f) so (6) yields

PjPi = 0, i 6= j, i, j = 1, 2, . . . , r (10)

and if we multiply both sides in (8) by Pj we obtain

Pj =
r
∑

i=1

PjPi = P 2j , j = 1, 2, . . . , r. (11)

Now, fix j and suppose that v ∈ Pj(V ) ∩
(

∑

i6=j

Pi(V )
)

that is

v = Pj(vj) =
∑

i6=j

Pi(vi) for some v1, v2, . . . , vr ∈ V. (12)
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Multiplying both sides of the latter equality by Pj for each j and applying (10)
gives P 2j (vj) =

∑

i6=j

PjPi(vi) = 0, thus (11) and (12) yields v = Pj(vj) = P 2j (vj) =

0. So Pj(V ) ∩
(

∑

i6=j

Pi(V )
)

= {0V } for every j = 1, 2, . . . , r, which means (by

Definition 5) that V =
r
⊕

i=1

Pi(V ).

To show the directness of
∑

Vi it is enough to show that Vj = Pj(V ) for each
j = 1, 2, . . . , r. So fix j and suppose v ∈ Vj , that is (f − λjId)nj (v) = 0. Then (3)

implies that Pi(v) = 0 for i 6= j so from (8) we have v = Id(v) =
r
∑

i=1

Pi(v) = Pj(v)

which means that Vj ⊆ Pj(V ). Together with (7) it gives

Pj(V ) = Vj = {v ∈ V | (f − λjId)nj (v) = 0}, j = 1, 2, . . . , r (13)

and finishes the proof of (5).
Now, take any basis in each Vi, say

Bi = (bi1, bi2, . . . , bisi), si := dim(Vi), i = 1, 2, . . . , r. (14)

According to (5), B = (B1, B2, . . . , Br) is a basis in V . Since (10) and (11) gives

Pi(v) = 0 if v ∈ Pj(V ), j 6= i Pi(v) = v if v ∈ Pi(V ), (15)

from (4) and (13) we get

fs(vi) =
r
∑

i=1

λiPi(vi) = λivi, vi ∈ Vi, i = 1, 2, . . . , r, (16)

whence in particular

fs(bik) = λibik, i = 1, 2, . . . , r, k = 1, 2, . . . , si (17)

so fs is diagonal with respect to B (thus semisimple).

3. Commutativity of fs and f − fs. If we take

fn := f − fs (18)

then by (4) fs, fn, f are polynomials of f and (Fact 1) we get

fsfn = fnfs, ffs = fsf (19)

so in particular fs, fn commute.
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4. Nilpotency of f−fs. On account of (16), (18) and (19), from binomial theorem
we obtain

vi ∈ Vi, N ­ ni =⇒ (fn)N (vi) = (f − fs)N (vi) =
N
∑

k=1

(

N

k

)

fN−k(−fs)k(vi) =

=
N
∑

k=1

(

N

k

)

fN−k(−λiId)k(vi) = (f − λiId)N (vi) = 0. (20)

Moreover, by (9) every element v ∈ V can be written as v =
r
∑

i=1

vi for some vi ∈ Vi

so if only N ­ max(ni) ­ ni, i = 1, 2, .., r, then

∀ v ∈ V (fn)N (v) = (fn)N
(

r
∑

i=1

vi

)

=
r
∑

i=1

(fn)N (vi) = 0 (21)

which means that (fn)N = 0, so fn is nilpotent as required.

5. Uniqueness. Thus there always exists a decomposition of f given by (4) and
(18). To show the uniqueness assume that there exists another pair of commuting
operators – semisimple gs and nilpotent gn – such that fs+ fn = f = gs+ gn. Let

m := fs − gs = gn − fn. (22)

By definition of gs we have gsf = gs(gs + gn) = g2s + gsgn = g
2
s + gngs = fgs

and similarly, for gn, we get gnf = gn(gs + gn) = (gs + gn)gn = fgn. Therefore gs
and gn commutes with every polynomial of f (Fact 2), in particular with fs and
fn. Thus fs − gs is semisimple and gn − fn is nilpotent (Fact 7), so by (22) m is
both nilpotent and semisimple, whence it has to be a zero operator (Fact 8) and
consequently fs = gs, fn = gn, which provides the uniqeness.

6. The general case. To simplify the notation we shall carry out this part of the
proof using matrices instead of operators. Note that if we take A to be a matrix
representation of f , then all the below can be rewritten for f and all the above
can be rewritten for A.
So, if A ∈Mn(K) (n = dimV ) and K contains all roots of χA(x), then there

exists a unique pair of commuting matrices – semisimple As and nilpotent An –
such that A = As +An. Moreover, they are polynomials of A, that is As = S(A),
An = N(A) for some S(x), N(x) ∈ K[x]. Also, we may assume these polynomials
have degree smaller than the degree of the minimal polynomial ρA(x). Indeed,
otherwise we can divide both S(x) and N(x) by ρA(x) obtaining

S(x) = R(x)ρA(x) + S(x), N(x) = T (x)ρA(x) +N(x),



18 B. Bajorska

where both S(x) and N(x), being remainders, have degree smaller than ρA(x). By
definition ρA(A) = 0 whence

S(A) = R(A)ρA(A) + S(A) = S(A), N(A) = T (A)ρA(A) +N(A) = N(A)

so although S(x), S(x) (respectively N(x), N(x)) may differ, they define the same
operator As (respectively An).
Now, let A ∈Mn(K) and let L be a root field of χA(x) over K. In particular

K ⊆ L, whence A ∈Mn(L) and according to all the above there exist S(x), N(x) ∈
L[x] such that deg(S(x)), deg(N(x)) < deg(ρA(x)), S(A) is semisimple, N(A) is
nilpotent, S(A)N(A)=N(A)S(A) and A= S(A)+N(A). To show that this is the
required decompositon of A we only have to prove that S(x), N(x) ∈ K[x].
Since K is perfect, L is a Galois extension of K (Fact 3). It means that K is

a fixed field of a Galois group G(L/K). Let σ be any element of G(L/K), that is
σ is an automorphism on L such that σ(k)=k for every k∈K. Then σ induces an
operator τ on Mn(L) in the natural way, namely

τ([xij ]) := [σ(xij)]. (23)

Observe first that τ is an endomorphism. Indeed, since σ is an automorphism, for
X = [xij ], Y = [yij ] ∈Mn(L), α ∈ L we have

τ(X + Y ) = τ([xij + yij ]) = [σ(xij + yij)] = [σ(xij) + σ(yij)] =

= [σ(xij)] + [σ(yij)] = τ(X) + τ(Y ),

τ(XY ) =

[

σ

(

m
∑

k=1

xikykj

)]

=

[

m
∑

k=1

σ(xik)σ(ykj)

]

= τ(X)τ(Y ),

τ(αX) = τ([αxij ]) = [σ(αxij)] = [σ(α)σ(xij )] = σ(α)τ(X). (24)

Both A and I are over K and σ fixes K elementwise, so τ(A) = A, τ(I) = I and

(24) implies that for every polynomial P (x) = p0 +
n
∑

i=1

pix
i ∈ L[x] we have

τ(P (A)) = σ(p0)I +
n
∑

i=1

σ(pi)A. (25)

Now, because A = S(A) +N(A), we have

A = τ(A) = τ(S(A) +N(A)) = τ(S(A)) + τ(N(A)).

N(A) is nilpotent, that is (N(A))m = 0 for some m and therefore (24) implies

(τ(N(A)))m = τ ((N(A))m) = τ(0) = 0
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so τ(N(A)) is also nilpotent. Moreover, S(A) (which is over L) is semisimple
and L contains all roots of χA(x), which (because of (16)) means that S(A) is
diagonalizable over L, that is there exists a diagonal matrix D ∈ Mn(L) and an
invertible matrix C ∈Mn(L) such that S(A) = CDC−1 and (24) implies

τ(S(A)) = τ(CDC−1) = τ(C)τ(D)(τ(C))−1 .

Since τ(D) is still diagonal (as σ(0)=0), τ(S(A)) is diagonalizable, whence semi-
simple. By assumption the decomposition of A is unique hence τ(S(A))−S(A)=0,

τ(N(A))−N(A)=0. In other words, if S(x) :=
m
∑

i=0

six
i, then

T (x) :=
m
∑

i=0

σ(si)xi −
m
∑

i=0

six
i =

m
∑

i=0

(σ(si)− si)xi

is such that T (A) = 0. But by assumption deg(T (x)) ¬ deg(S(x)) < deg(ρA(x))
and ρA(x) is a polynomial of the smallest possible positive degree such that
ρA(A) = 0 (Definition 3). Thus T (x) has to be a zero polynomial, that is σ(si) = si
for each i, which in turn means that si are fixed points of σ. Similarly, coefficients
of N(x), ni’s say, are also fixed points of σ. But σ was an arbitrary automorphism
in G, so it follows that si, ni lies in a fixed field of G(L/K), which is K, for each i.
Therefore S(x), N(x) ∈ K[x], which finishes the proof for A and hence for f . �

Corollary 1. Let A be a square matrix over a perfect field K. Then there exist

exactly one pair of commuting matrices – semisimple As and nilpotent An – such

that A = As +An. �

Observation 1. The theorem (and Corollary 1) states that the Jordan-Chevalley
decomposition always exists if a field is perfect. Moreover, I is semisimple over
any field, 0 is nilpotent over any field and I = I + 0, so the decomposition may
exists even over non-perfect fields. But it may not exist either.
Indeed, let K be the smallest extension field of Z2 containing T 2 for some T

transcendental over Z2. In particular T /∈ K. Now take A =

[

0 T 2

1 0

]

∈M2(K).

Then χA(x) = x2 − T 2 = (x − T )(x + T ) = (x − T )2 (since −1 = 1 in Z2). This
polynomial is irreducible over K (since T /∈ K and the factorization is unique)
and has a double root (over Z2(T ) which is an extension field of K). By definition
it means that K is not perfect. Note that A is not semisimple. Indeed, otherwise
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there exists an invertible matrix C =

[

a c

b d

]

∈ Z2(T ) such that

[

a c

b d

][

0 T 2

1 0

]

=

[

T 0
0 T

][

a c

b d

]

whence in particular c = aT, d = bT and thus ad− bc = 0, a contradiction.
Now, assume, contrary to our claim, that the Jordan-Chevalley decomposition

of A exists, that is A = S+N , with S ∈M2(K) semisimple, N ∈M2(K) nilpotent
and SN = NS. Since A is not semisimple, A 6= S whence N 6= 0. Moreover,

NA = NS +N2 = SN +N2 = AN , so for N =

[

a c

b d

]

, a, b, c, d ∈ K we have

[

a c

b d

] [

0 T 2

1 0

]

=

[

0 T 2

1 0

] [

a c

b d

]

and hence (by multiplying and comparing matrices) N =

[

a bT 2

b a

]

, a, b ∈ K.

Since N is nilpotent, χN (x) = x2 (Fact 8) that is x2 = χN (x) = (x−a)2− b2T 2 =
x2+a2− b2T 2 and so a2− b2T 2 = 0. Hence a is a root of x2− b2T 2 = (x− bT )2, so
a = bT . Since T /∈ K, this is possible only if a = b = 0 and consequently N = 0,
a contradiction. Thus the Jordan-Chevalley decomposition of A does not exist.

Observation 2. Parts 1 and 2 of the proof of the Theorem can be pursued in
more compact way (like e.g. in [3]). Namely, if χf (x) =

∏

(x−λi)ni , then from the
structural theorem for modules over principal ideal rings V =

⊕

Ker(f −λiId)ni

(which is the first equality in (5)). Moreover, each of these subspaces is invariant
under f (that is asserted by the fact that Pi’s are actually projection operators
(by (11)) and follows from the second equality in (5)) and f acts on each as
a multiplication by λi (which we show in (16)). Since (x − λi)ni , (x − λj)nj are
coprime for i 6= j, then the system of congruences1

P (x) ≡ λi (mod (x− λi)ni) (26)

has a solution by the Chinese Remainder Theorem2and fs = P (A) (P (x) given
in (4) satisfies this system of congruences; the difference is that Pi(x) determined
by ChRT satisfy the congruence

∑

Pi(x) ≡ 1 (mod χA(x)) rather than equality

1f(x)≡g(x) (mod h(x))
def
⇐⇒ h(x)|(f(x)−g(x)); for details see e.g. [1, Chapter II, §1].

2Works over any commutative ring, e.g. Z; for more details see e.g. [1, Chapter II, §2].
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(2), which is of no importance since it is no needed explicitly and gives the same
operator fs). Thus our proof is essentially the same but we use basic facts only.

Definition 11. Let A = [aij ] ∈ Mm(K). By the diagonal part of A we mean

the matrix diag(A) := [cij ] ∈Mm(K), where cij =







aii for i = j,

0 for i 6= j.

Example: Let A =

[

1 2
3 4

]

. Then diag(A) =

[

1 0
0 4

]

.

Corollary 2. Let K be a perfect field, A ∈ Mn(K) and L be a root field of
χA(x) over K. Therefore there exist a Jordan matrix J ∈Mn(L) and an invertible
matrix C ∈ Mn(L) such that A = CJC−1. Let D := diag(J), N := J −D. Then
CDC−1, CNC−1 ∈Mn(K) and

A = CDC−1 + CNC−1 (27)

is the Jordan-Chevalley decomposition of A.

Proof. Since L contains all roots of χA(x), a Jordan normal form of A exists
(Fact 6). If D = diag(J), then D is diagonal and the only nonzero elements of
N = J−D are the 1’s lying on the superdiagonal of J . Thus N is upper-triangular
with zeros on the diagonal, which means that it is nilpotent. Also, the diagonal of
D contains all roots of χA(x) and in that case we may choose the basis B given by
(14) in such a manner that columns of C are the vectors in B (in different order
maybe).

Now, suppose J =
r
⊕

i=1

Ji and for each Jordan block Ji we have Ji = Di +Ni,

where Di := diag(Ji), Ni := Ji −Di whence D =
r
⊕

i=1

Di, N =
r
⊕

i=1

Ni. Now, if Ji

corresponds to λi, then

DiNi = NiDi = [cij ], where cij =







λi j = i+ 1,

0 j 6= i+ i.

Therefore DN =
r
⊕

i=1

DiNi =
r
⊕

i=1

NiDi = ND and hence

(CDC−1)(CNC−1) = C(DN)C−1 = C(ND)C−1 = (CNC−1)(CDC−1).

Moreover, CDC−1 is semisimple (since D is diagonal), CNC−1 is nilpotent (since
Nm = 0, then (CNC−1)m = CNmC−1 = 0). This means that CDC−1, CNC−1
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are precisely S(A), N(A), respectively, given in 6-th part of the proof of the The-
orem, whence both belong to Mn(K). Finally,

A = CJC−1 = C(D +N)C−1 = CDC−1 + CNC−1

so it is a Jordan-Chevally decomposition of A as required. �

Remark. The above proof is in fact another version of the existence part of the
proof of the Theorem (but it does not preserve uniqueness).

Observation 3. Let A be a linear operator on V (or a square matrix) over K.
0 is both nilpotent and semisimple and commutes with every matrix. So if A is
semisimple (respectively nilpotent), then A = A + 0 (respectively A = 0 + A) is
the Jordan-Chevalley decomposition of A.

4. How to determine the decomposition?

We shall focus on determining the Jordan-Chevalley decomposition over per-
fect fields. If f is a linear operator, take A to be its matrix representation with
respect to the standard basis. Thus we assume that a square matrix A over some
perfect field is given as a start point and our aim is to evaluate As, An.

Case 1: Take a look at A. If A is semisimple, then As := A, An := 0. If A
is nilpotent then As := 0, An := A.
Sometimes it is enough to take a look at A to determine whether it is semisimple,
for instance if

1. A is diagonal (by definition);

2. A is triangular (upper- or lower-) with pairwise distinct elements on the
diagonal (since then J is diagonal);

3. A is a direct sum of a finite number of semisimple matrices (if A=
⊕

Ai and
Ai = CiDiC−1i over some extension field of K with Di diagonal for each i,
then A = CDC−1, where C=

⊕

Ci, D=
⊕

Di, C
−1=

⊕

C−1i by Fact 5).

Moreover, if A upper-triangular or lower-triangular with only zeros on the diagonal
then A is surely nilpotent.

If this is not the case, then consider
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Case 2: Determine χA(x).
Note that if χA(x) is irreducible over K, then (since K is perfect) all roots of
χA(x) are distinct, so J is diagonal. The same situation is if χA(x) is a product of
pairwise distint irreducible factors over K, since then J is a direct sum of diagonal
matrices. In either case A is semisimple and As := A,An := 0.

If this is still not the case, then consider the general

Case 3: Determine As, An.

The previous section provides a few methods for evaluating As, An namely

Method 1, which follows from the proof of the Theorem:

Step 1 Factorize the characteristic polynomial χA(x) =
r
∏

i=1

(x− λi)ni .

Step 2 TakeWi(x) :=
∏

k 6=i

(x−λk)nk and find Qi’s such that
r
∑

i=1

Qi(x)Wi(x)=1.

It can be done by the repeated application of the Inverse Euclidean Algorithm.
Also, we may assume that deg(Qi(x)) < ni (see e.g. [1, Chapter V, Theorem 8]),

so Qi(x) =
ni−1
∑

j=1

qijx
j for each i and it is enough to determine the coefficients.

Step 3 Take As :=
r
∑

i=1

λiQi(A)Wi(A), An := A−As.

Method 2, which follows from Observation 2:

Step 1 Factorize the characteristic polynomial χA(x) =
r
∏

i=1

(x− λi)ni .

Step 2 Determine any polynomial P (x) satisfying the system of congruences
P (x) ≡ λi (mod (x− λi)ni), i = 1, 2, .., r by the Chinese Remainder Theorem
Step 3 Take As := P (A), An := A−As

Method 3, which follows from Corollary 2:

Step 1 Factorize the characteristic polynomial χA(x) =
r
∏

i=1

(x− λi)ni .

Step 2 Determine a Jordan matrix J and and invertible matrix C such that
A = CJC−1.
Step 3 Take D := diag(J), N := J −D and As := CDC−1, An := CNC−1

Note that if A has only two eigenvalues, then Methods 1 and 2 works the same.
In general, usually, Method 2 works faster than 1 and Method 3 is the slowest.

Finally, observe that if A =
⊕

Ai and Ai = Si +Ni is the Jordan-Chevalley
decomposition of Ai for each i, then A =

⊕

Si +
⊕

Ni is the Jordan-Chevalley
decomposition of A (which follows from Corollary 2). So can say we have
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The general method

Step 0 Write A as a direct sum of some Ai, i = 1, 2, .., a (possibly with a = 1)
Steps 1-3 For each Ai use one of the three methods given above to determine

the semisimple part Ais and the nilpotent part Ain.

Step 4 Take As :=
a
⊕

i=1

Ais, An :=
a
⊕

i=1

Ain

Now we shall give a few examples to show how it works.

Example 1. Let K = C, V = C4 and

A =











0 0 0 0
4 0 0 0
1 6 0 0
2 0 10 0











.

A is lower-triangular, whence nilpotent, so A = 0 + A is the Jordan-Chevalley
decomposition of A.

Example 2. Let K = Z3, and

A =







0 0 2
1 0 1
0 1 0






.

Since ”taking a look” at A does not give a clue, we evaluate the characteristic
polynomial χA(x) = det(xId − A) = x3 + 2x + 1. It has no roots in Z3 since
χA(0) = χA(1) = χA(2) = 1, and therefore χA(x) has no factor of degree 1 over
Z3. So it cannot have a factor of degree 2 either, that is χA(x) is irreducible. Hence
A is semisimple and A = A+ 0 is the Jordan-Chevalley decomposition of A.

Example 3. Let K = R and

A =

























1 −1 0 0 0 0 0
1 1 0 0 0 0 0
0 0 4 9 6 0 0
0 0 0 2 0 0 0
0 0 0 0 3 0 0
0 0 0 0 0 5 1
0 0 0 0 0 0 5

























.
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Then A=
3
⊕

i=1

Ai, where A1=

[

1 −1
1 1

]

, A2=







4 9 6
0 2 0
0 0 3






, A3=

[

5 1
0 5

]

. Thus

it is enough to consider each Ai separately. χA1(x) = (x−1)
2+1 is irreducible over

R, so A1 is semisimple and S1=A1, N1=0. A2 is also semisimple (having distint
elements on the diagonal), whence S2 = A2, N2 = 0. A3 is a Jordan matrix, so

S3 =

[

5 0
0 5

]

, N3 =

[

0 1
0 0

]

. Thus A =
3
⊕

i=1

Si+
3
⊕

i=1

Ni is the Jordan-Chevalley

decomposition of A.

Example 4. Let K = Q, V = Q6 and

f(x1, x2, x3, x4, x5, x6) = (3x1, x1 + 3x2, 0, x3, 7x5, 3x6).

Then f is linear and its matrix representation with respect to the standard basis
is

A =





















3 1 0 0 0 0
0 3 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 7 0
0 0 0 0 0 3





















.

Thus A is a Jordan matrix, whence As = diag(A), An = A−As and therefore

f = fs + fn where







fs(x1, x2, x3, x4, x5, x6) = (3x1, 3x2, 0, 0, 7x5, 3x6),

fn(x1, x2, x3, x4, x5, x6) = (x1, 0, 0, x3, 0, 0).

Example 5. Let K = R and

A =











0 −1 0 0
1 0 1 0
0 0 0 −1
0 0 1 0











.

Then χA(x) = (x2 + 1)2.
None of the tricks will work, so we have to go through the whole process (e.g.

Method 1). (x2+1)2 = (x+ i)2(x− i)2, so we have to find Q1(x), Q2(x) such that
Q1(x)(x − i)2 +Q2(x)(x + i)2 = 1. By the Euclidean Algorithm we have

x2 + 2ix− 1 = 1 · (x2 − 2ix− 1) + 4ix, x2 − 2ix− 1 =
(

−
1
4
ix−

1
2

)

4ix− 1
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hence the Inverse Euclidean Algorithm yields

1 =
(

−
1
4
ix−

1
2

)

4ix− (x2 − 2ix− 1) =

=
(

−
1
4
ix−
1
2

)(

(x2 + 2ix− 1)− (x2 − 2ix− 1)
)

− (x2 − 2ix− 1) =

=
(

−
1
4
ix−

1
2

)

(x2 + 2ix− 1) +
(

1
4
ix−
1
2

)

(x2 − 2ix− 1).

Therefore we take Q1(x) =
(

1

4
ix− 1

2

)

, Q2(x) =
(

− 1
4
ix− 1

2

)

. Now simplify:

−i(x− i)2
(

1
4
ix−
1
2

)

+ i(x+ i)2
(

−
1
4
ix−

1
2

)

=
1
2
x3 +

3
2
x.

Thus As = 12A
3 + 3

2
A, so

A =











0 −1 0 1

2

1 0 1

2
0

0 0 0 −1
0 0 1 0











+











0 0 0 − 1
2

0 0 1

2
0

0 0 0 0
0 0 0 0











and this is the Jordan-Chevalley decomposition of A.
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Omówienie

Operator liniowy na przestrzeni wektorowej nad danym ciałem K nazywa się
półprostym, jeśli jest diagonalizowalny nad pewnym rozszerzeniem tego ciała. Ope-
rator nazywa się nilpotentnym, jeśli pewna jego potęga jest operatorem zerowym.
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W niektórych przypadkach łatwo rozłożyć operator na sumę operatorów półpro-
stego i nilpotentnego, ale z reguły nie są one przemienne.
Jeśli jednak ciało K jest doskonałe, to rozkład dowolnego operatora na sumę

dwóch przemiennych operatorów – półprostego i nilpotentnego – zawsze istnieje
i jest jednoznaczny (fakt ten najczęściej nazywa się twierdzeniem o rozkładzie
Jordana-Chevalleya). Rozkład ten jest istotny np. w badaniu algebr Liego.
W głównej części artykułu (rozdział 4) zostały omówione różnego rodzaju

metody wyznaczania postulowanego rozkładu, na podstawie wyników z rozdzia-
łu 3, dla których punktem wyjścia jest dowód twierdzenia o rozkładzie Jordana-
Chevalleya. Warto zauważyć, że do zrozumienia rozważań, przeprowadzonych
w pracy, wystarczy podstawowa wiedza z zakresu przestrzeni liniowych, ciał oraz
pierścieni wielomianów (niektóre mniej podstawowe fakty i definicje zostały przy-
pomniane w rozdziale 2).




