PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Residual Closeness of Generalized Thorn Graphs

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the most sensitive characteristics of network vulnerability is residual closeness. Calculating the closeness and the residual closeness of larger graphs is a time consuming and operations heavy process. In this article, we try to mitigate the process for thorn graphs-we present the thorn graphs residual closeness as a function of the closeness and the residual closeness of the original graphs.
Wydawca
Rocznik
Strony
1--15
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
  • Pactera Technologies, Redmond, WA, USA
Bibliografia
  • [1] Chvatal V. Tough graphs and Hamiltonian circuits. Discrete Math, 1973. 5(3):215-228. URL https://doi.org/10.1016/0012-365X(73)90138-6.
  • [2] Jung H A. On a class of posets and the corresponding comparability graphs. J. Combin. Theory, B, 1978. 24(2):125-133. URL https://doi.org/10.1016/0095-8956(78)90013-8.
  • [3] Woodall D R. The binding number of a graph and its Anderson number. J. Combin. Theory, B, 1973. 15(3):225-255. URL https://doi.org/10.1016/0095-8956(73)90038-5.
  • [4] Barefoot C A, Entringer R, Swart H. Vulnerability in graphs - a comparative Survey. J. Combin. Math. Combin. Comput., 1987. 1(38):13-22.
  • [5] Dangalchev Ch. Residual closeness in networks. Phisica A, 2006. 365(2):556-564. URL https://doi.org/10.1016/j.physa.2005.12.020.
  • [6] Krishnamoorthy M, Krishnamurty B. Fault diameter of interconnection networks. Comput. Math. Appl., 1987. 13(5-6):577-582. URL https://doi.org/10.1016/0898-1221(87)90085-X.
  • [7] Yin J H, Li J S, Chen G L, Zhong C. On the fault-tolerant diameter and wide diameter of ω-connected graphs. Networks, 2005. 45(2):88-94.
  • [8] Erves R, Zerovnik J. Mixed fault diameters of Cartesian graph bundles. Discrete applied mathematics, 2013. 161(12): 1726-1733. URL https://doi.org/10.1016/j.dam.2011.11.020.
  • [9] Gutman I. Distance in thorny graph. Publ. Inst. Math. (Beograd), 1998. 63:31-36. ISSN:0350-1302.
  • [10] Bonchev D, Klein D. On the Wiener number of thorn trees, stars, rings, and rods. Croatica chemica ACTA, 2002. 75(2):613-620. URL https://hrcak.srce.hr/127540.
  • [11] Dangalchev Ch. Residual closeness and generalized closeness. IJFCS, 2011. 22(8):1939-1947. URL https://doi.org/10.1142/S0129054111009136.
  • [12] Deutsch E, Klavzar S. Computing the Hosoya polynomial of graphs from primary subgraphs. Match Commun. Math. Comput. Chem., 2013. 70:627-644. ISSN:0340-6253.
  • [13] Aytac A, Odabas Z.N. Residual closeness of wheels and related networks. IJFCS, 2011. 22(5):1229-1240. URL https://doi.org/10.1142/S0129054111008660.
  • [14] Odabas Z.N, Aytac A. Residual closeness in cycles and related networks. Fundamenta Informaticae, 2013. 124(3): 297-307. doi:10.3233/FI-2013-835.
  • [15] Turaci T, Okten M. Vulnerability of Mycielski graphs via residual closeness. Ars Combinatoria, 2015. 118: 419-427.
  • [16] Aytac A, Berberler Z.N.O. Robustness of Regular Caterpillars. IJFCS, 2017. 28(7): 835-841. URL https://doi.org/10.1142/S0129054117500277.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e765624-4797-455c-95ba-50aaf28f0a57
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.