PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical investigation of a movable wall response on a flame propagation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper contains a description of a shock wave (called a flame when the deflagration is considered) propagation pattern impact on a motion of a barrier. Here, the numerical research was conducted on a model of a pyrotechnic actuator, hence, the piston is understood as a movable barrier. The processes occurring within the pyrotechnic actuators after ignition of a pyrotechnic propellants have been explained. The investigations are focused on the dependence of a shape of the actuator’s combustion chamber and the piston stroke time. It appears that the appropriate design of the combustion chamber can decrease the time required for a piston total stroke using this same type of a propellant. The visualization of the flame occurring due to ignition of the propellant is crucial for understanding the dependence between the construction of the actuators interior and the piston stroke time. Therefore, the approach of simulating numerically the flames aroused. The simulation was conducted on a full scale 3D model of a pyrotechnic actuator which is a detail representation of a real object on which the verification test will be conducted. However, only the flame propagation was considered here. The material of an actuators members was not investigated, hence the AUTODYN solver considered them as a single rigid bodies with its own mass and inertia.
Twórcy
autor
  • Wroclaw University of Technology Department of Motor Vehicles and Combustion Engines Braci Gierymskich Street 164, 51-640 Wrocław tel.: +48/(71) 347 79 26, fax +48/(71) 347 79 18
  • Wroclaw University of Technology Department of Motor Vehicles and Combustion Engines Braci Gierymskich Street 164, 51-640 Wrocław tel.: +48/(71) 347 79 26, fax +48/(71) 347 79 18
Bibliografia
  • [1] Ben-Dor, G., Shock-Wave Reflection Phenomena, Springer Verlag, New York, N.Y., U.S.A. 1991.
  • [2] Ben-Dor, G., Igra, O., Elperin, T., Handbook of Shock Waves, Academic Press, Boston, Massachusetts. U.S.A. 2007.
  • [3] Kowalewicz, A., Podstawy procesów spalania, Wydawnictwo Naukowo Techniczne. Warszawa 2000.
  • [4] Bull, D. C., Edwards, D. H., An investigation of the reflected shock integration process in a shock tube, AIAA Journal, Vol. 6, No. 8, pp. 1549-1555, 1968.
  • [5] Henshaw, W. D., Smyth, N. F., Schwendeman, D. W., Numerical shock propagation using geometrical shock dynamics, Journal of Fluid Mechanics, Vol. 17, pp. 519-545, 1986.
  • [6] Johansson, B., Apazidis, N., Lesser, M. B., On shock waves in a confined reflector, Wear, pp. 79-85, 1999.
  • [7] Gui, M., Fan, B., Dong, G., Ye, J., Interaction of a reflected shock from a concave wall with a flame distorted by an incident shock, Shock Waves, Vol. 18, pp. 487-494, 2009.
  • [8] Gushanov, A. R., Dependence of the Shape of a Detonation Wave Front on the Detonation Wave Velocity upon Detonation of a Cylindrical Charge, Combustion, Explosion, and Shock Waves, Vol. 37, No. 1, pp. 113-118, 2001.
  • [9] ANSYS, Inc. ANSYS AUTODYN User's Manual, Release 14.5 October 2012.
  • [10] Introduction to ANSYS AUTODYN, Material models, Chapter 9, ANSYS, Inc.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e750664-0ee2-4941-895a-808cc76824ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.