PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Uniqueness of meromorphic functions of differential polynomials sharing a small function with finite weight

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let f be a non-constantmeromorphic function and a = a(z) (≢ 0,∞) a small function of f . Here, we obtain results similar to the results due to Indrajit Lahiri and Bipul Pal [Uniqueness of meromorphic functions with their homogeneous and linear differential polynomials sharing a small function, Bull. KoreanMath. Soc. 54 (2017), no. 3, 825-838] for a more general differential polynomial by introducing the concept ofweighted sharing.
Wydawca
Rocznik
Strony
141--153
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
  • Department of Mathematics, Jnana Bharathi Campus, Bangalore University, Bengaluru-560 056, India
  • Department of Mathematics, Jnana Bharathi Campus, Bangalore University, Bengaluru-560 056, India
Bibliografia
  • [1] A. Banerjee and B. Chakraborty, Further investigations on a question of Zhang and Lu, Ann. Univ. Paedagog. Crac. Stud. Math. 14 (2015), 105-119.
  • [2] A. Banerjee and S. Mukherjee, Uniqueness of meromorphic functions whose n-th derivative share one or two values, Novi Sad J. Math. 39 (2009), no. 2, 7-19.
  • [3] S. S. Bhoosnurmath and S. R. Kabbur, On entire and meromorphic functions that share one small function with their differential polynomial, Int. J. Anal. 2013 (2013), Article ID 926340.
  • [4] B. Chakraborty, Some uniqueness results related to the Brück conjecture, Analysis (Berlin) 38 (2018), no. 2, 91-100.
  • [5] K. S. Charak and B. Lal, Uniqueness of p(f) and P[f], Turkish J. Math. 40 (2016), no. 3, 569-581.
  • [6] W. K. Hayman, Meromorphic Functions, Oxford Math. Monogr., Clarendon Press, Oxford, 1964.
  • [7] I. Lahiri and B. Pal, Uniqueness of meromorphic functions with their homogeneous and linear differential polynomials sharing a small function, Bull. Korean Math. Soc. 54 (2017), no. 3, 825-838.
  • [8] J.-D. Li and G. X. Huang, On meromorphic functions that share one small function with their derivatives, Palest. J. Math. 4 (2015), no. 1, 91-96.
  • [9] J.-T. Li and P. Li, Uniqueness of entire functions concerning differential polynomials, Commun. Korean Math. Soc. 30 (2015), no. 2, 93-101.
  • [10] C. Meng, Uniqueness of meromorphic functions sharing one value, Appl. Math. E-Notes 7 (2007), 199-205.
  • [11] C. Meng, Value sharing of entire functions, Appl. Math. E-Notes 8 (2008), 179-185.
  • [12] H. P. Waghamore and S. H. Naveenkumar, Results on uniqueness of meromorphic functions of differential polynomial, Malaya J. Mat. 6 (2018), no. 1, 14-20.
  • [13] C. C. Yang, On two entire functions which together with their first derivatives have the same zeros, J. Math. Anal. Appl. 56 (1976), no. 1, 1-6.
  • [14] H. X. Yi, A question of C. C. Yang on the uniqueness of entire functions, Kodai Math. J. 13 (1990), no. 1, 39-46.
  • [15] H. X. Yi, Uniqueness of meromorphic functions and a question of C. C. Yang, Complex Variables Theory Appl. 14 (1990), no. 1-4, 169-176.
  • [16] Q. Zhang, Meromorphic function that shares one small function with its derivative, JIPAM. J. Inequal. Pure Appl. Math. 6 (2005), no. 4, Article ID 116.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e74323d-e620-4b6b-99d7-15794711c730
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.