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1. Introduction  
 
The algorithms used in Digital Forensics (DF) to 
search and carve files have been widely 
researched in the past two decades. The standard 
method of searching for file headers and footers 
was improved by realizing that most files have 
structured architecture, or the algorithm used to 
fill the data into files is known. This led to the 
file content-awareness search (Garfinkel 2007 
[6], Wei et al. 2010 [19]). Some content aware 
algorithms were based on a statistical approach 
(Veenman 2007 [20]) paired with neural 
networks (Amirani et al. 2008 [1]). To counter 
the growing disk volume size, random sampling 
of disk clusters was proposed (Garfinkel 2010 
[7]). This method proved valuable in areas 
where the information that a disk has “some” 
files of interest is more important than actually 
finding “all” possible files (for example: a quick 
pre-search of many drives to prioritize them for 
future work). Somehow, the opposite approach 
is to hash every file, and even hash parts of files, 
and then hash all disk areas to search for those 
file parts (Garfinkel et al. 2010 [8], Young et al. 
2012 [21]). That method allowed the recovery of 
partially overwritten files. As simple hashing 
could only find identical content, in order to find 
similarities between files, fuzzy-hash algorithms 
were proposed (Roussev et al. 2010 [16], 
Roussev et al. 2013 [17]). Because the size of 
the hashes of known files became  
a storage problem for on-site analysis, the use of 

a Bloom filters hashing algorithm combined 
with cluster sampling was proposed (Penrose et 
al. 2015 [15]). Today, even parallel GPU 
computing, that had enormous success in other 
fields of DF, is finally being introduced in 
carving and data recovery (Škrbina, Stojanovski 
2012 [18], Bayne et al. 2019 [2]). 

All of the algorithms presented above have  
one thing in common. All of them rely heavily 
on analyzing the data. The structure of any 
individual file can be known, but the location of 
the file is considered to be purely random.  
This is a somehow strange approach, as  
the algorithm that is used to write files on an 
NTFS Volume was described in some detail by 
Carrier in 2005 [3] and by Microsoft itself [9].  

 
2. New Technology File System 

NTFS in detail 
 

The NTFS was created in order to replace  
the old FAT (File Allocation Table) file system. 
FAT has not entirely disappeared today, as it 
retains a strong position in the field of memory 
cards (especially mobile phones and digital 
cameras). In the hard drives of our home 
computers, NTFS dominates the market, as 
85-90% of all personal computers have 
Windows installed, depending on which survey 
you look at [13]. 

The basic concept of NTFS is “everything 
is a file”. Instead of strict boundaries between 
system area and data area, as in FAT, NTFS 
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stores its metadata or system data in system files. 
System files are hidden from the user and their 
names start with “$”. The $MFT file is  
the most important of them. The Master File 
Table ($MFT) stores the information of every 
file that exists on the hard drive. It even stores 
information about itself. $MFT and the hard 
drive itself is populated with data according to 
a special algorithm. 

For reasons of simplicity we can assume 
that the $MFT file is a table with records of 
1024B in size. Every file that exists on a hard 
drive has a corresponding $MFT record. Every 
record has its own unique index. A simple record 
consists of information about the file name, 
creation, modification or access times, status of 
the file (deleted or not) and many other 
attributes. It is worth mentioning that when 
a user deletes a file, nothing is changed except 
two bytes in the corresponding $MFT record. 
The file data and all other record data is intact. 
Another interesting attribute is the file identifier 
or as we describe it – the delete count. Every 
record has this variable, its value is increased by 
one every time a file attached to the record is 
deleted.  
We can assume that this variable describes how 
many times this record was used in the past.  
By “use” we mean writing a completely new 
file. When a new file is created two things can 
happen. One: if every $MFT record has status 
set as active (not deleted) a new record is created 
at the end of the table. Two: if a record with 
status set as deleted exists, then the record with 
smallest index is erased and populated with the 
new metadata of the new file. Small files are 
stored directly in the $MFT record (resident 
files).With files larger than 500-700B, the $MFT 
record stores only pointers to the area of the disk 
where the actual file data resides (non-resident 
files). 

An example $MFT is presented in  
Table 1. The names of the files and their 
parameters are purely random. We assumed that 
the hard drive is 25 clusters in size. According to 
this particular $MFT there are five files on  
the hard drive (A, B, C, D, F) with two files 
being deleted (B, F). 

The distribution of files from Table 1 is 
presented in Figure 1. Different areas on  
the hard drive are as follows: OU – unallocated 
area, an area not addressed by any of  
the $MFT record; OA – allocated area, an area 
occupied by undeleted files; OD – deleted area; 
that is area occupied by deleted files, whose 
records still exist in $MFT. 

 

Table 1. Example of data stored in $MFT;  
a – file name, b – the starting points of the file 
fragments,  c – the sizes of the file fragments,  

d – status (0-active, 1-deleted), e –  delete count 
 

$MFT 
id a b c d e 
1 A 0 3 0 0 
2 B 4 4 1 3 
3 C 9 4 0 0 
4 D 17 1 0 0 
5 F 18 7 1 1 

 
There could be a situation where two or 

more files address the same area (one file 
overwrites another). The creation of such 
a situation is presented in chapters 7 and 8. 
 
 
 
 
 
A A A  B B B B  C C C C     D F F F F F F F 

 
Fig. 1. Distribution of files from Table 1 

 
In this article we will use the distribution 

table shown in Table 2 below. Every cluster can 
belong only to one area. Clusters belonging to an 
allocated area are stored in row one, clusters 
belonging to a deleted area are stored in row two 
and clusters belonging to an unallocated area are 
stored in row three.  
 

Table 2. Distribution table 
 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
OA A A A       C C C C     D        
OD     B B B B           F F F F F F F 
OU                          

 
3. Best Fit Algorithm 

 
We assume that all files are big enough that their 
data is non-resident, which means they are 
stored outside the $MFT file. The data of every 
files is written using the Best Fit Algorithm  
(BFA) [3]. In theory, NTFS is always trying to 
put a file in the “best” free area. The “best” area 
can be described as the smallest unallocated area 
that is equal or bigger in size than the file that is 
going to be written. If there is more than one of 
these areas, the one closest to the beginning of 
the disk is chosen. In a case where all 
unallocated areas are smaller than the file size, 
fragmentation occurs. The biggest unallocated 
area is filled with data (if there are two or more 
unallocated areas with equal size the one closest 
to the beginning of drive is chosen).  

OA OD OU 
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The remaining part of the file is written in  
the “best” remaining area or fragmented again. 
This simple algorithm was successfully verified 
in our research. Some more details need to be 
explained before we can continue. 

After writing the data, actualization of the 
$MFT file follows. If there are no deleted files, 
the new record will be created for the new file 
just after the last record (there cannot be 
“empty” records between active records). If 
deleted files exist, than the record with the 
smallest index is overwritten with new content 
for the new file. All previous content of a record 
is discarded. We will describe the writing 
algorithm in $MFT as the “First Free Algorithm” 
(FFA), where free means there is either an empty 
record or deleted file. In the following sections, 
we assumed the corresponding rules: 
a)  writing and deleting is sequential;  
b)  size of file is known at the time of writing; 
c)  there are only non-resident files with 

minimum size of 1 cluster; 
d)  data is written first; 
e)  data is written using BFA; 
f)  data is written into OU even if 

fragmentation occurs; 
g)  if file size is bigger than OU then the file is 

written into the area created by merging the 
OU and OD areas; 

h)  if file size is bigger than the merged area 
then writing does not occur; 

i)  when all data is written, the $MFT is 
updated with the new record using FFA; 

j)  deleting a file increases the delete count 
variable by one and changes the status flag 
from 0 to 1. 
The scant literature on the subject provides 

information that, during writes BFA and FFA 
algorithms are used.  The question of what data 
area is selected for an algorithm to work on, to 
the best of the authors’ knowledge, hasn’t really 
been explored yet. For example, if a new file 
overwrites the $MFT entry of the existing file X, 
is the data belonging to file X taken into 
consideration by the writing algorithm? In other 
words, is the new file written into the OU or 
OU+OD area? In the following chapters we will 
describe all the nuances of the proposed rules of 
writing. 

 
4. Process of writing in examples 
 
According to rule a) there can only be writing or 
deleting operations. These operations are 
sequential – one operation must end before 
starting another. In chapters 5–8 we describe  
a few variants of writing a file with the name N. 

The status of the $MFT is taken from Table 1 so 
the initial distribution of files is equal to Table 2. 
The process of writing is explained using three 
distribution tables: first – before writing starts, 
second – after writing data, and third – after 
updating the $MFT. The $MFT is explained 
using two tables: before and after update. 
According to rule i) a new file will always 
occupy the record with index 2. 
 
5. File size smaller or equal to at least 

one unallocated area 
 

We are writing file N of size 2. 
The new file, according to rules e) and f), 

will be stored in the third unallocated area 
(Table 3).  
 

Tab. 3. Distribution of files before writing data 
 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
OA A A A       C C C C     D        
OD     B B B B           F F F F F F F 
OU    1     2     3 3 3 3         

 
 

The data of the file is written from left to 
right and occupies clusters 13 and 14 (Table 4). 

 
 

Tab. 4. Distribution of files after writing data 
 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
OA A A A       C C C C N N   D        
OD     B B B B           F F F F F F F 
OU    1     2       3 3         

 
After successfully writing the data,  

the NTFS then updates $MFT (Table 5).  
 
 

Tab. 5. Changes in $MFT when writing file N  
of size 2 before update 

 
$MFT 

id a b c d e 
1 A 0 3 0 0 
2 B 4 4 1 3 
3 C 9 4 0 0 
4 D 17 1 0 0 
5 F 18 7 1 1 

 
Using the FFA record, 2 will be overwritten 

with information on file N, therefore we lose  
the information about file B (Table 6). At this 
point the process of writing is complete. Even 
the data of file B is still intact, as file B has 
merely stopped being recognized by the file 
system (the system has lost awareness of its 
existence). File B is now part of an unallocated 
area (Table 7).  
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Tab. 6. Changes in $MFT when writing file N 

 of size 2 after update 
 

$MFT 
id a b c d e 
1 A 0 3 0 0 
2 N 13 2 0 3 
3 C 9 4 0 0 
4 D 17 1 0 0 
5 F 18 7 1 1 

 
 

Tab. 7. Distribution of files after updating $MFT 
 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
OA A A A       C C C C N N   D        
OD                   F F F F F F F 
OU    1 B B B B 2       3 3         

 
 

6. File size is bigger than the biggest 
unallocated area, but smaller than 
OU 
 

We are writing file N of size 5. 
The NTFS, according to rule f), is trying to 

write the new file in OU. As the file is bigger 
than every unallocated sub-area, fragmentation 
starts. The biggest unallocated area is clusters 
13-16, as shown in Table 8. This area will be 
filled with the first part of the file. 

 
Tab. 8. Distribution of files before writing data 

 
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

OA A A A       C C C C     D        
OD     B B B B           F F F F F F F 
OU    1     2     3 3 3 3         

 
The remaining part of the file (one cluster) 

will be written using BFA on the remaining 
unallocated area. After writing the first part of 
the file, we have two unallocated areas with size 
1 (clusters 3 and 8). The system picks the one 
closest to the beginning of the hard disk, 
therefore the second fragment of the file is 
written in cluster 3 (Table 9). 
 

Tab. 9. Distribution of files after writing data 
 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
OA A A A N2      C C C C N1 N1 N1 N1 D        
OD     B B B B           F F F F F F F 
OU         2                 

 
After successfully writing the data, the 

NTFS then updates the current $MFT (Table 5). 
Using FFA, record 2 will be overwritten with the 
information on file N, therefore we lose the 
information about file B (Table 10).  

At this point the process of writing is 
complete. Even the data from file B is still intact, 
file B is no longer recognized by file system (the 

system has lost awareness of its existence). File 
B is now part of an unallocated area (Table 11).  

 
Tab. 10. Changes in $MFT when writing file N of 

size 5 after update 
 

$MFT 
id a b c d e 
1 A 0 3 0 0 
2 N 13,3 4,1 0 3 
3 C 9 4 0 0 
4 D 17 1 0 0 
5 F 18 7 1 1 

 
 

Tab. 11. Distribution of files after updating $MFT 
 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
OA A A A N2      C C C C N1 N1 N1 N1 D        
OD                   F F F F F F F 
OU     B B B B 2                 

 
7. Files size is bigger than OU 

 
We are writing file N of size 7. 

As there is not enough room for the file in 
the unallocated area, according to rule g), we 
merge OU and OD. For future analysis we assume 
that unallocated area is increased by the deleted 
area (Table 12). 

 
Tab. 12. Distribution of files before writing data 

 
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

OA A A A       C C C C     D        
OD                          
OU    1 B B B B 2     3 3 3 3  F F F F F F F 

 
The file system still knows where files B 

and F reside, but acts like this area was part of 
OU. Increasing OU creates three unallocated 
areas with sizes counting from left to right: 6, 4 
and 7 clusters. The new file is placed in the third 
unallocated area (clusters 18-24) as shown in 
Table 13.  
 

Tab. 13. Distribution of files after writing data 
 
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

OA A A A       C C C C     D N N N N N N N 
OD     B B B B                  
OU    1     2     3 3 3 3         

 
At this point an update of the $MFT occurs 

similar to the previous examples (Table 14) 
resulting in file B being lost by the file system 
(Table 15). In this particular example, file B lost 
its $MFT record with data intact, while file F 
lost all of its data but the $MFT record was 
intact. The file F is overwritten by file N.  
We can still recover the metadata of file F (name 
and time-stamps for example) but the actual data 
of file F is lost. 
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Tab. 14. Changes in $MFT when writing file N  
of size 7 after update 

 
$MFT 

id a b c d e 
1 A 0 3 0 0 
2 N 18 7 0 3 
3 C 9 4 0 0 
4 D 17 1 0 0 
5 F 18 7 1 1 

 
 

Tab. 15. Distribution of files after updating $MFT 
 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
OA A A A       C C C C     D N N N N N N N 
OD                          
OU    1 B B B B 2     3 3 3 3         

 
 
8. File size is bigger than the biggest 

area from merged OU and OD 
 

We are writing file N of size 15 
The merging of areas is similar to the 

example in chapter 7, creating three unallocated 
areas: clusters 3–8, clusters 13–16, and clusters  
18–24 (Table 12). As the file data cannot fit into 
a single unallocated area fragmentation occurs. 
The first fragment is put into the third 
unallocated area (clusters 18–24), the remaining 
part of file is still bigger than the biggest 
remaining unallocated area. Another 
fragmentation starts. The second part of the file 
occupies the first unallocated area (clusters 3–8). 
The remaining part is written in the second 
unallocated area (clusters 13–16) as shown in 
Table 16.  
 

Tab. 16. Distribution of files after writing data 
 
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

OA A A A N2 N2 N2 N2 N2 N2 C C C C N3 N3   D N1 N1 N1 N1 N1 N1 N1 
OD                          
OU                3 3         

 
At this point, an update of the $MFT occurs 

similarly to the previous examples (Table 17). 
As the data from file B has already been 
overwritten, the update of the $MFT does not 
change the OU (Table 18).  

 
Tab. 17. Changes in $MFT when writing file N of 

size 7 after update 
 

$MFT 
id a b c d e 
1 A 0 3 0 0 
2 N 18,3,13 7,6,2 0 3 
3 C 9 4 0 0 
4 D 17 1 0 0 
5 F 18 7 1 1 

In this particular example, file B loses its 
$MFT record and data, while file F loses all of 
its data, but the $MFT record remains intact.  
File N, as in chapter 7, overwrites file F. 

 
Tab. 17. Changes in $MFT when writing file N  

of size 7 after update 
 

$MFT 
id a b c d e 
1 A 0 3 0 0 
2 N 18,3,13 7,6,2 0 3 
3 C 9 4 0 0 
4 D 17 1 0 0 
5 F 18 7 1 1 

 
 

Tab. 18. Distribution of files after updating $MFT 

 
 
 
9. Verification based on real NTFS 

partition observation 
 
In order to verify the proposed model, we 

created an NTFS partition on a 4GB thumb 
drive. 

The cluster size was set to default, which is 
4096B or 8 sectors. Writing on flash memory is 
a very sophisticated process that is very different 
to writing on a hard drive [4]. These processes 
are done internally by the microcontroller of the 
thumb drive and are not visible to  
the Operating System. Therefore, from the 
NTFS perspective, writing on a thumb drive acts 
similarly to writing to a hard disk. The changes 
on the thumb drive were analyzed using 
WinHex. After formatting a volume to NTFS 
only the system files were present on the 
partition, with their location presented in Table 
19. The $secure file is not on the partition after 
formatting, but is created before the first write 
process. Therefore, it always resides in  
cluster 35. 

The three unallocated areas before $MFT 
have the sizes: 8, 248691 and 2509 clusters. For  
the tests, the following files were generated:  
• 2.clust – size 2 clusters, 
• 4.clust – size 4 clusters, 
• 8.clust – size 8 clusters, 
• File-548KB.pdf – size 137 clusters, 
• File-980KB.pptx – size 246 clusters,  
• File-8,25MB.odp – size 2112 clusters. 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
OA A A A N2 N2 N2 N2 N2 N2 C C C C N3 N3   D N1 N1 N1 N1 N1 N1 N1 
OD                          
OU                3 3         
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All of the above files together occupy 2509 
clusters and fit ideally into the third unallocated 
area. All tests were done after fresh formatting 
of the volume. 
 

Tab. 19. Files that are on the partition just after 
formatting 

 

id Name 1st 
cluster  

Last 
cluster 

size 
(clusters) notes 

1 $BOOT  0 1 2  
2 $MFTMirr 2 2 1  
3 $UpCase 3 34 32  

4 ($secure) 35  1 
Created 
before 
first write 

5 #1 
unallocated 36 43 8  

6 Reserved 44  1  
7 $TxLog2 45 2604 2560  

8 #2 
unallocated 2605 251295 248691 approx. 

970MB 
9 $LogFile 251296 256703 5408  
10 $Secure 256704 256768 628  
11 $AttrDef 256769 256769 1  
12 $Tops 256770 257025 256  
13 $TxfLog.blf 257026 257041 16  
14 $TxfLog1 257042 259601 2560  
15 $TxfLog 259602  1 Folder 

16 #3 
unallocated 259603 262111 2509 approx. 

10MB 
17 $Bitmap 262112 262141 3584  
18 Reserved 262142 262143 2  
19 $MFT 262144 262207 64  

20 Reserved 262208 313375 51168 

approx. 
5% area 
reserved 
for $MFT 

21 unallocated 313376   Ok. 
2,6GB 

 
Test 1: all of the above files were written from 
biggest to smallest. 
 

The situation after test 1 is presented in  
Figure 2. 
 

 
Fig. 2. Files located on volume after test 1 

File-8,25MB.odp was, in line with the BFA 
rule, written into the third unallocated area 
starting from cluster 259603. The next two files, 
File-980KB.pptx and File-548KB.pdf were 
written just after. The third unallocated area 
shrank to 14 clusters after this operation.  
The file 8.clust was written into the first 
unallocated area starting from cluster 36 and 
occupied it completely. The last two files 4.clust 
and 2.clust were written into the remaining third 
unallocated area. 

 
Test 2: all of the above files were written from 
smallest to biggest. 
 

The files 2.clust and 4.clust were written  
into the first unallocated area that shrinks to 2 
clusters. Because file 8.clust was too big for  
the remainder of the first unallocated area, it was 
written into the third one. Directly after all the 
other files, File-548KB.pdf, File-980KB.pptx and 
File-8,25MB.odp, were written (Figure 3). 
 

 
 

Fig. 3. Files located on volume after test 2 
 

 
Test 3: filling first and third unallocated area. 

 
First, we copied the file 8.clust. The file 

occupied the first unallocated area completely. 
Next, the files 2.clust, 4.clust, 8.clust, File-
548KB.pdf, File-980KB.pptx and File-
8,25MB.odp were copied, which fully occupied 
the third unallocated. After this operation, only 
two unallocated areas were left on the volume, 
with 970MB and 2.6GB sizes respectively. The 
folder, containing 103 jpg files, 240MB size in 
total, was copied. The files were inserted into the 
second unallocated area and occupied clusters 
2605-64156. The distribution of data on the 
volume is presented in Figure 4.  
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Occupied 
Area 

0-2604 

JPG 
files 

2605- 
-64156 

#1 
unallocated 

area 
64157- 

-251295 

Occupied 
Area 

251296- 
-313375 

2# 
unallocated 

area 
313376- 

                                   
 

Fig. 4. Position of files after completing test 3 
 
Based on this test we can assume that 

copying files that are similar in size will fill an 
unallocated area as follows: the files are copied 
one by one, and are located next to each other. 
The detailed view of the position of the last files 
is presented in Figure 5. The files are sorted by 
their first cluster. 

 

 
 

Fig. 5. Detailed view of the position of the last copied 
files from test 3 (WinHex) 

 
Test 4: Deleting and writing files using  
the outcome from test 3. 

After successfully completing test three  
the following operations were executed: 
• deleting of files: DSC_6338.JPG, 

DSC_6339.JPG,  DSC_6340. JPG, 
• writing files: 1.TXT, File1, 
• deleting of file: 1.TXT, 
• writing of file: File2. 

 
The representation of $MFT for the files in 

interest is shown on Table 20 and corresponds to 
the situation shown in Figure 5. The location of 
the files in interest is presented in Table 21.  
 

Tab. 20. Changes in $MFT during test 4. Starting 
situation 

 
$MFT 

id a b c d e 
140 DSC_6336 60662 641 0 0 
141 DSC_6337 61303 604 0 0 
142 DSC_6338 61907 538 0 0 
143 DSC_6339 62445 556 0 0 
144 DSC_6340 63001 630 0 0 
145 DSC_6341 63631 526 0 0 

Tab. 21. Position of files during test 4. Starting 
situation 

 
OA DSC_6336 DSC_6337 DSC_6338 DSC_6339 DSC_6340 DSC_6341   
OD                           
OU                           

 
After completing the first deletion of 4 files, 

nothing changes on the drive except an update in 
$MFT: status flags are set to “delete” and delete 
counters are increased (Table 22). Files 
DSC_6338.JPG DSC_6339.JPG, DSC_6340. 
JPG  cease being visible to the user and are 
transferred to OD (Table 23). 

 
Tab. 22. Changes in $MFT during test 4 after 
deleting DSC_6338, DSC_6339, DSC_6340 

 
$MFT 

id a b c d e 
140 DSC_6336 60662 641 0 0 
141 DSC_6337 61303 604 0 0 
142 DSC_6338 61907 538 1 1 
143 DSC_6339 62445 556 1 1 
144 DSC_6340 63001 630 1 1 
145 DSC_6341 63631 526 0 0 

 
 

Tab. 23. Position of files during test 4 after deleting 
DSC_6338, DSC_6339, DSC_6340 

 
OA DSC_6336 DSC_6337             DSC_6341   
OD         DSC_6338 DSC_6339 DSC_6340       
OU                           

 
Writing file 1.TXT of 180 clusters in size 

will take place after file DSC_6341.JPG (rule 
d)). The update of $MFT happens and, because 
there are no other deleted files on the volume 
other than the three we just deleted, the file 
1.TXT will be given record 142 in $MFT  
(Table 24). The overwriting of record 142 means 
the system loses the information about file 
DSC_6338.JPG therefore its data is shifted to 
the OU (Table 25). 
 

Tab. 24. Changes in $MFT during test 4 after  
writing 1.TXT 

 

$MFT 
id a b c d e 

140 DSC_6336 60662 641 0 0 
141 DSC_6337 61303 604 0 0 
142 1.TXT 64157 180 0 1 
143 DSC_6339 62445 556 1 1 
144 DSC_6340 63001 630 1 1 
145 DSC_6341 63631 526 0 0 

 
 

Tab. 25. Position of files during test 4 after  
writing 1.TXT 

 
OA DSC_6336 DSC_6337             DSC_6341 1.TXT 
OD             DSC_6339 DSC_6340       
OU         DSC_6338               
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In the next step File1 is written. File1 is 
small enough (453 cluster) to fit into the 
unallocated area created from file 
DSC_6338.JPG (538 clusters). Writing File1 
overwrites record 143 during $MFT update 
(Table 26). After update, file DSC_6339.JPG is 
moved to OU (Table 27).  

 
Tab. 26. Changes in $MFT during test 4 after  

writing File1 
 

$MFT 
id a b c d e 

140 DSC_6336 60662 641 0 0 
141 DSC_6337 61303 604 0 0 
142 1.TXT 64157 180 0 1 
143 File1 61907 453 0 1 
144 DSC_6340 63001 630 1 1 
145 DSC_6341 63631 526 0 0 

 
 

Tab. 27. Position of files during test 4 after  
writing File1 

 
OA DSC_6336 DSC_6337 File1          DSC_6341 1.TXT 
OD                 DSC_6340       
OU             DSC_6339           

 
Deleting file 1.TXT only updates $MFT 

(Table 28) and moves data to OD (Table 29).  
 

Tab. 28. Changes in $MFT during test 4 after 
deleting 1.TXT 

 
$MFT 

id a b c d e 
140 DSC_6336 60662 641 0 0 
141 DSC_6337 61303 604 0 0 
142 1.TXT 61907 538 1 2 
143 File1 61907 453 0 1 
144 DSC_6340 63001 630 1 1 
145 DSC_6341 63631 526 0 0 

 
 

Tab. 29. Position of files during test 4 after  
deleting 1.TXT 

 
OA DSC_6336 DSC_6337 File1          DSC_6341   
OD                 DSC_6340     1.TXT 
OU             DSC_6339           

 
The size of File2 is 544 clusters and is 

smaller than the unallocated area from the 
remaining part of DSC_6338.JPG and 
DSC_6339.JPG. Once again the record 142 will 
be overwritten in $MFT (Table 30) and therefore 
file 1.TXT is lost by the system and moved to OU 
(Table 31). 

 
 
 

 

Tab. 30. Changes in $MFT during test 4 after  
writing File2 

$MFT 
id a b c d e 

140 DSC_6336 60662 641 0 0 
141 DSC_6337 61303 604 0 0 
142 File2 62360 544 0 2 
143 File1 61907 453 0 1 
144 DSC_6340 63001 630 1 1 
145 DSC_6341 63631 526 0 0 

 
 

Tab. 31. Position of files during test 4 after  
writing File2 

 
OA DSC_6336 DSC_6337 File1 File2       DSC_6341   
OD                 DSC_6340       
OU                         1.TXT 

 
It is important to mention at this point that 

no data is moved or copied to the volume when 
we, say, move or transfer to OU or OD. It only 
represents a change in the distribution table 
explained in chapters 2-8. The detailed view of 
the position of files for the last four operations is 
shown in Figure 6-9 (WinHex).  
 

 
 

Fig. 6. Position of files during test 4,  
after writing 1.TXT 

 
 

 
 

Fig. 7. Position of files during test 4,  
after writing File1 

 
 

 
 

Fig. 8. Position of files during test 4,  
after deleting 1.TXT 

 
 

 
 

Fig. 9. Position of files during test 4,  
after writing File2 
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In the figures 9, the files are sorted by their 
$MFT index, so the view from WinHex 
corresponds to tables 24, 26, 28 and 30.  
This proofs that our concept of writes and 
deletes presented in chapter 3 is valid, as the 
changes in real NTFS Volume (data area and 
$MFT itself) are exactly the same as that 
predicted by our algorithm (tab. 20-31).  

 
10. Summary 
 
As described in chapter 1, all modern computer 
forensic software uses very sophisticated search 
algorithms on unallocated areas to find deleted 
files. All of these algorithms assume the pseudo-
random position of files. With this assumption,  
it is not possible to narrow, with confidence,  
the search area. Algorithms have to search 
through all unallocated space.  

This article proposes to thinking of  
the NTFS allocation algorithm as a Finite- 
-State Machine (Gladyshev 2004 [10], 
Gladyshev 2005 [11]). With a Finite-State 
Machine (FSM) approach, we assumed that all 
of the operations start only when the previous 
ones finish. Therefore, knowing the current state 
of disk Sn, we can predict the location of a new 
file to be written (record of $MFT file and data 
area), if we know the file’s size. That means 
that, with a given file size, we know exactly 
what the state Sn+1 will look like. 

 
Sn → write(x) → Sn+1 

 
What is more, having a sequence of known 

writes and deletes we can predict the location of 
every file in the sequence. 

 
Sn → write(x) → Sn+1 → write(y) → Sn+2 
 
As shown in this article, the above was 

proven valid. So now, the question arises: if we 
know the state of the disk “now”, is it possible to 
reconstruct the possible state Sn x operations 
back?  

S’
n ← write(x’) ← S’

n+1 ← write(y’) ← Sn+2 
 
Having resolved possible sequences: 

write(x’), write(y’), delete(x’) …. write(z’)  
for the first time in digital forensics, we would 
know: 
• if file y’ exists, or has been partially or 

totally overwritten, 
• the time of writing and deleting of the file 

y’ (written after file x’, deleted before 
writing file z’), 

• if any recovered file belongs to this Volume 
or is left-over from the previous one (before 
formatting).  
Olivier [14], states that computing 

complexity might be a challenge in FSM but  
as Gladyshev [11] demonstrated with a simple 
case, we think that now, with advances in other 
areas of Digital Forensics,  this method is finally 
ready to be used as complement to the many 
other existing methods [5]. Some methods 
described in chapter 1 can be used with 
cooperation with FSM, scaling down  
the computer complexity: 
• scanning unallocated areas: deciding which 

portions of a disk have content and which 
are empty, 

• standard header-footer carving in content 
full area: finding files that are easily 
recoverable, 

• statistical analysis and cluster sampling of 
the remaining area and grouping it by 
category. 
The next step in our work will be to 

construct a mathematical model for the writing 
and deleting process. This model will be used to 
create a carving and analyzing tool which 
exploits the NTFS file writing algorithm.  
 
11. Known limitations 
 
The proposed model is true only when  
the system knows the size of file that is being 
copied. If the file size is unknown, the stream is 
created with some starting size while the data is 
copied. If that starting size is filled, then the next 
data part, bigger than the previous one, is 
created. The algorithm of allocating next data 
parts continues until maximum (selected by 
system) part size is reached. The allocation of 
those fragments is most likely BFA but further 
research is needed [9]. 

The FSM approach exploits the core of file 
systems architecture which can be traced way 
back to the 1970’s. 

In that era “a hard disk” was a big magnetic 
tape with one head available to do one operation 
at a time. This is not true of the modern NTFS  
as it has built-in mechanisms for performance 
improvement, system checks and many other 
system services (logging, indexing etc.). These 
services run in the background, disrupting  
the idea of one operation at a time. Thankfully, 
the system reserves more area for future work 
than it needs, so we can assume system area as 
static with fixed size (for at least some period of 
time) and remove it from consideration.  
This assumption is even truer for external drives 
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as writes, created there by operating system, are 
minimal. 

We are approaching an SSD-only era, as 
more and more new computers are equipped 
only with SSD disks. The actual tests were not 
performed on solid-state drives but their internal 
algorithms of garbage collection and TRIM 
basically wipe the content of deleted files [4].  
The allocation of clusters may still be BFA but 
recovering deleted files is mostly not possible 
due to TRIM wiping.  

The Finite-state-machine approach is 
probably not possible to implement with new 
File Systems. For example Apple New Files 
System (APFS) [8] was designed from scratch to 
ignore all limitation of previous file systems as it 
was designed with SSD and parallel writes/reads 
in mind. 
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Zapis i kasowanie plików na twardych dyskach z systemem plików NTFS 

 
F. DARNOWSKI, A. CHOJNACKI 

 
Celem artykułu jest przedstawienie szczegółowych informacji na temat zapisu oraz kasowania plików na 
dyskach twardych wyposażonych w system plików NTFS (ang. New Technology File System). Najważniejsze  
przy tym są: algorytm wykorzystywany przez komputer do zapisu danych BFA (ang. Best Fit Algorithm) oraz 
algorytm FFT (ang. First Free Algorithm) aktualizacji pliku $MFT (ang. Master File Table). Zaprezentowano 
pewną konwencję opisu obszarów na dysku twardym. Przedstawione zasady zostały zweryfikowane na 
przykładach. 
 
Słowa kluczowe: dysk twardy, NTFS, $MFT. 
 


