
COMPUTER SCIENCE AND MATHEMATICAL MODELLING 8 5−15 (2018)

 5

Writing and Deleting files on hard drives with NTFS

F. DARNOWSKI, A. CHOJNACKI

darnowski.fryderyk@gmail.com, andrzej.chojnacki@wat.edu.pl

Military University of Technology, Faculty of Cybernetics
Institute of Computer and Information Systems
W. Urbanowicza Str. 2, 00-908 Warsaw, Poland

The goal of this article was to present detailed information about writing and deleting process on the NTFS
(New Technology File System) formatted drives. The most important are the algorithms used by computer to
write data BFA (Best Fit Algorithm) and FFA (First-Free Algorithm) to update $MFT (Master File Table).
The naming convention of the areas of the drive is presented. The proposed rules of writing and deleting
algorithm were successfully validated with real NTFS volume.

Keywords: hard disk, NTFS, $MFT.

DOI: 10.5604/01.3001.0013.1457

1. Introduction

The algorithms used in Digital Forensics (DF) to
search and carve files have been widely
researched in the past two decades. The standard
method of searching for file headers and footers
was improved by realizing that most files have
structured architecture, or the algorithm used to
fill the data into files is known. This led to the
file content-awareness search (Garfinkel 2007
[6], Wei et al. 2010 [19]). Some content aware
algorithms were based on a statistical approach
(Veenman 2007 [20]) paired with neural
networks (Amirani et al. 2008 [1]). To counter
the growing disk volume size, random sampling
of disk clusters was proposed (Garfinkel 2010
[7]). This method proved valuable in areas
where the information that a disk has “some”
files of interest is more important than actually
finding “all” possible files (for example: a quick
pre-search of many drives to prioritize them for
future work). Somehow, the opposite approach
is to hash every file, and even hash parts of files,
and then hash all disk areas to search for those
file parts (Garfinkel et al. 2010 [8], Young et al.
2012 [21]). That method allowed the recovery of
partially overwritten files. As simple hashing
could only find identical content, in order to find
similarities between files, fuzzy-hash algorithms
were proposed (Roussev et al. 2010 [16],
Roussev et al. 2013 [17]). Because the size of
the hashes of known files became
a storage problem for on-site analysis, the use of

a Bloom filters hashing algorithm combined
with cluster sampling was proposed (Penrose et
al. 2015 [15]). Today, even parallel GPU
computing, that had enormous success in other
fields of DF, is finally being introduced in
carving and data recovery (Škrbina, Stojanovski
2012 [18], Bayne et al. 2019 [2]).

All of the algorithms presented above have
one thing in common. All of them rely heavily
on analyzing the data. The structure of any
individual file can be known, but the location of
the file is considered to be purely random.
This is a somehow strange approach, as
the algorithm that is used to write files on an
NTFS Volume was described in some detail by
Carrier in 2005 [3] and by Microsoft itself [9].

2. New Technology File System

NTFS in detail

The NTFS was created in order to replace
the old FAT (File Allocation Table) file system.
FAT has not entirely disappeared today, as it
retains a strong position in the field of memory
cards (especially mobile phones and digital
cameras). In the hard drives of our home
computers, NTFS dominates the market, as
85-90% of all personal computers have
Windows installed, depending on which survey
you look at [13].

The basic concept of NTFS is “everything
is a file”. Instead of strict boundaries between
system area and data area, as in FAT, NTFS

Fryderyk Darnowski, Andrzej Chojnacki, Writing and Deleting files on hard drives with NTFS

 6

stores its metadata or system data in system files.
System files are hidden from the user and their
names start with “$”. The $MFT file is
the most important of them. The Master File
Table ($MFT) stores the information of every
file that exists on the hard drive. It even stores
information about itself. $MFT and the hard
drive itself is populated with data according to
a special algorithm.

For reasons of simplicity we can assume
that the $MFT file is a table with records of
1024B in size. Every file that exists on a hard
drive has a corresponding $MFT record. Every
record has its own unique index. A simple record
consists of information about the file name,
creation, modification or access times, status of
the file (deleted or not) and many other
attributes. It is worth mentioning that when
a user deletes a file, nothing is changed except
two bytes in the corresponding $MFT record.
The file data and all other record data is intact.
Another interesting attribute is the file identifier
or as we describe it – the delete count. Every
record has this variable, its value is increased by
one every time a file attached to the record is
deleted.
We can assume that this variable describes how
many times this record was used in the past.
By “use” we mean writing a completely new
file. When a new file is created two things can
happen. One: if every $MFT record has status
set as active (not deleted) a new record is created
at the end of the table. Two: if a record with
status set as deleted exists, then the record with
smallest index is erased and populated with the
new metadata of the new file. Small files are
stored directly in the $MFT record (resident
files).With files larger than 500-700B, the $MFT
record stores only pointers to the area of the disk
where the actual file data resides (non-resident
files).

An example $MFT is presented in
Table 1. The names of the files and their
parameters are purely random. We assumed that
the hard drive is 25 clusters in size. According to
this particular $MFT there are five files on
the hard drive (A, B, C, D, F) with two files
being deleted (B, F).

The distribution of files from Table 1 is
presented in Figure 1. Different areas on
the hard drive are as follows: OU – unallocated
area, an area not addressed by any of
the $MFT record; OA – allocated area, an area
occupied by undeleted files; OD – deleted area;
that is area occupied by deleted files, whose
records still exist in $MFT.

Table 1. Example of data stored in $MFT;
a – file name, b – the starting points of the file
fragments, c – the sizes of the file fragments,

d – status (0-active, 1-deleted), e – delete count

$MFT
id a b c d e
1 A 0 3 0 0
2 B 4 4 1 3
3 C 9 4 0 0
4 D 17 1 0 0
5 F 18 7 1 1

There could be a situation where two or

more files address the same area (one file
overwrites another). The creation of such
a situation is presented in chapters 7 and 8.

A A A B B B B C C C C D F F F F F F F

Fig. 1. Distribution of files from Table 1

In this article we will use the distribution

table shown in Table 2 below. Every cluster can
belong only to one area. Clusters belonging to an
allocated area are stored in row one, clusters
belonging to a deleted area are stored in row two
and clusters belonging to an unallocated area are
stored in row three.

Table 2. Distribution table

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
OA A A A C C C C D
OD B B B B F F F F F F F
OU

3. Best Fit Algorithm

We assume that all files are big enough that their
data is non-resident, which means they are
stored outside the $MFT file. The data of every
files is written using the Best Fit Algorithm
(BFA) [3]. In theory, NTFS is always trying to
put a file in the “best” free area. The “best” area
can be described as the smallest unallocated area
that is equal or bigger in size than the file that is
going to be written. If there is more than one of
these areas, the one closest to the beginning of
the disk is chosen. In a case where all
unallocated areas are smaller than the file size,
fragmentation occurs. The biggest unallocated
area is filled with data (if there are two or more
unallocated areas with equal size the one closest
to the beginning of drive is chosen).

OA OD OU

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 8 5−15 (2018)

 7

The remaining part of the file is written in
the “best” remaining area or fragmented again.
This simple algorithm was successfully verified
in our research. Some more details need to be
explained before we can continue.

After writing the data, actualization of the
$MFT file follows. If there are no deleted files,
the new record will be created for the new file
just after the last record (there cannot be
“empty” records between active records). If
deleted files exist, than the record with the
smallest index is overwritten with new content
for the new file. All previous content of a record
is discarded. We will describe the writing
algorithm in $MFT as the “First Free Algorithm”
(FFA), where free means there is either an empty
record or deleted file. In the following sections,
we assumed the corresponding rules:
a) writing and deleting is sequential;
b) size of file is known at the time of writing;
c) there are only non-resident files with

minimum size of 1 cluster;
d) data is written first;
e) data is written using BFA;
f) data is written into OU even if

fragmentation occurs;
g) if file size is bigger than OU then the file is

written into the area created by merging the
OU and OD areas;

h) if file size is bigger than the merged area
then writing does not occur;

i) when all data is written, the $MFT is
updated with the new record using FFA;

j) deleting a file increases the delete count
variable by one and changes the status flag
from 0 to 1.
The scant literature on the subject provides

information that, during writes BFA and FFA
algorithms are used. The question of what data
area is selected for an algorithm to work on, to
the best of the authors’ knowledge, hasn’t really
been explored yet. For example, if a new file
overwrites the $MFT entry of the existing file X,
is the data belonging to file X taken into
consideration by the writing algorithm? In other
words, is the new file written into the OU or
OU+OD area? In the following chapters we will
describe all the nuances of the proposed rules of
writing.

4. Process of writing in examples

According to rule a) there can only be writing or
deleting operations. These operations are
sequential – one operation must end before
starting another. In chapters 5–8 we describe
a few variants of writing a file with the name N.

The status of the $MFT is taken from Table 1 so
the initial distribution of files is equal to Table 2.
The process of writing is explained using three
distribution tables: first – before writing starts,
second – after writing data, and third – after
updating the $MFT. The $MFT is explained
using two tables: before and after update.
According to rule i) a new file will always
occupy the record with index 2.

5. File size smaller or equal to at least

one unallocated area

We are writing file N of size 2.
The new file, according to rules e) and f),

will be stored in the third unallocated area
(Table 3).

Tab. 3. Distribution of files before writing data

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
OA A A A C C C C D
OD B B B B F F F F F F F
OU 1 2 3 3 3 3

The data of the file is written from left to
right and occupies clusters 13 and 14 (Table 4).

Tab. 4. Distribution of files after writing data

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
OA A A A C C C C N N D
OD B B B B F F F F F F F
OU 1 2 3 3

After successfully writing the data,

the NTFS then updates $MFT (Table 5).

Tab. 5. Changes in $MFT when writing file N
of size 2 before update

$MFT

id a b c d e
1 A 0 3 0 0
2 B 4 4 1 3
3 C 9 4 0 0
4 D 17 1 0 0
5 F 18 7 1 1

Using the FFA record, 2 will be overwritten

with information on file N, therefore we lose
the information about file B (Table 6). At this
point the process of writing is complete. Even
the data of file B is still intact, as file B has
merely stopped being recognized by the file
system (the system has lost awareness of its
existence). File B is now part of an unallocated
area (Table 7).

Fryderyk Darnowski, Andrzej Chojnacki, Writing and Deleting files on hard drives with NTFS

 8

Tab. 6. Changes in $MFT when writing file N

 of size 2 after update

$MFT
id a b c d e
1 A 0 3 0 0
2 N 13 2 0 3
3 C 9 4 0 0
4 D 17 1 0 0
5 F 18 7 1 1

Tab. 7. Distribution of files after updating $MFT

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
OA A A A C C C C N N D
OD F F F F F F F
OU 1 B B B B 2 3 3

6. File size is bigger than the biggest
unallocated area, but smaller than
OU

We are writing file N of size 5.
The NTFS, according to rule f), is trying to

write the new file in OU. As the file is bigger
than every unallocated sub-area, fragmentation
starts. The biggest unallocated area is clusters
13-16, as shown in Table 8. This area will be
filled with the first part of the file.

Tab. 8. Distribution of files before writing data

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

OA A A A C C C C D
OD B B B B F F F F F F F
OU 1 2 3 3 3 3

The remaining part of the file (one cluster)

will be written using BFA on the remaining
unallocated area. After writing the first part of
the file, we have two unallocated areas with size
1 (clusters 3 and 8). The system picks the one
closest to the beginning of the hard disk,
therefore the second fragment of the file is
written in cluster 3 (Table 9).

Tab. 9. Distribution of files after writing data

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
OA A A A N2 C C C C N1 N1 N1 N1 D
OD B B B B F F F F F F F
OU 2

After successfully writing the data, the

NTFS then updates the current $MFT (Table 5).
Using FFA, record 2 will be overwritten with the
information on file N, therefore we lose the
information about file B (Table 10).

At this point the process of writing is
complete. Even the data from file B is still intact,
file B is no longer recognized by file system (the

system has lost awareness of its existence). File
B is now part of an unallocated area (Table 11).

Tab. 10. Changes in $MFT when writing file N of

size 5 after update

$MFT
id a b c d e
1 A 0 3 0 0
2 N 13,3 4,1 0 3
3 C 9 4 0 0
4 D 17 1 0 0
5 F 18 7 1 1

Tab. 11. Distribution of files after updating $MFT

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
OA A A A N2 C C C C N1 N1 N1 N1 D
OD F F F F F F F
OU B B B B 2

7. Files size is bigger than OU

We are writing file N of size 7.

As there is not enough room for the file in
the unallocated area, according to rule g), we
merge OU and OD. For future analysis we assume
that unallocated area is increased by the deleted
area (Table 12).

Tab. 12. Distribution of files before writing data

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

OA A A A C C C C D
OD
OU 1 B B B B 2 3 3 3 3 F F F F F F F

The file system still knows where files B

and F reside, but acts like this area was part of
OU. Increasing OU creates three unallocated
areas with sizes counting from left to right: 6, 4
and 7 clusters. The new file is placed in the third
unallocated area (clusters 18-24) as shown in
Table 13.

Tab. 13. Distribution of files after writing data

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

OA A A A C C C C D N N N N N N N
OD B B B B
OU 1 2 3 3 3 3

At this point an update of the $MFT occurs

similar to the previous examples (Table 14)
resulting in file B being lost by the file system
(Table 15). In this particular example, file B lost
its $MFT record with data intact, while file F
lost all of its data but the $MFT record was
intact. The file F is overwritten by file N.
We can still recover the metadata of file F (name
and time-stamps for example) but the actual data
of file F is lost.

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 8 5−15 (2018)

 9

Tab. 14. Changes in $MFT when writing file N
of size 7 after update

$MFT

id a b c d e
1 A 0 3 0 0
2 N 18 7 0 3
3 C 9 4 0 0
4 D 17 1 0 0
5 F 18 7 1 1

Tab. 15. Distribution of files after updating $MFT

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
OA A A A C C C C D N N N N N N N
OD
OU 1 B B B B 2 3 3 3 3

8. File size is bigger than the biggest

area from merged OU and OD

We are writing file N of size 15
The merging of areas is similar to the

example in chapter 7, creating three unallocated
areas: clusters 3–8, clusters 13–16, and clusters
18–24 (Table 12). As the file data cannot fit into
a single unallocated area fragmentation occurs.
The first fragment is put into the third
unallocated area (clusters 18–24), the remaining
part of file is still bigger than the biggest
remaining unallocated area. Another
fragmentation starts. The second part of the file
occupies the first unallocated area (clusters 3–8).
The remaining part is written in the second
unallocated area (clusters 13–16) as shown in
Table 16.

Tab. 16. Distribution of files after writing data

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

OA A A A N2 N2 N2 N2 N2 N2 C C C C N3 N3 D N1 N1 N1 N1 N1 N1 N1
OD
OU 3 3

At this point, an update of the $MFT occurs

similarly to the previous examples (Table 17).
As the data from file B has already been
overwritten, the update of the $MFT does not
change the OU (Table 18).

Tab. 17. Changes in $MFT when writing file N of

size 7 after update

$MFT
id a b c d e
1 A 0 3 0 0
2 N 18,3,13 7,6,2 0 3
3 C 9 4 0 0
4 D 17 1 0 0
5 F 18 7 1 1

In this particular example, file B loses its
$MFT record and data, while file F loses all of
its data, but the $MFT record remains intact.
File N, as in chapter 7, overwrites file F.

Tab. 17. Changes in $MFT when writing file N

of size 7 after update

$MFT
id a b c d e
1 A 0 3 0 0
2 N 18,3,13 7,6,2 0 3
3 C 9 4 0 0
4 D 17 1 0 0
5 F 18 7 1 1

Tab. 18. Distribution of files after updating $MFT

9. Verification based on real NTFS

partition observation

In order to verify the proposed model, we

created an NTFS partition on a 4GB thumb
drive.

The cluster size was set to default, which is
4096B or 8 sectors. Writing on flash memory is
a very sophisticated process that is very different
to writing on a hard drive [4]. These processes
are done internally by the microcontroller of the
thumb drive and are not visible to
the Operating System. Therefore, from the
NTFS perspective, writing on a thumb drive acts
similarly to writing to a hard disk. The changes
on the thumb drive were analyzed using
WinHex. After formatting a volume to NTFS
only the system files were present on the
partition, with their location presented in Table
19. The $secure file is not on the partition after
formatting, but is created before the first write
process. Therefore, it always resides in
cluster 35.

The three unallocated areas before $MFT
have the sizes: 8, 248691 and 2509 clusters. For
the tests, the following files were generated:
• 2.clust – size 2 clusters,
• 4.clust – size 4 clusters,
• 8.clust – size 8 clusters,
• File-548KB.pdf – size 137 clusters,
• File-980KB.pptx – size 246 clusters,
• File-8,25MB.odp – size 2112 clusters.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
OA A A A N2 N2 N2 N2 N2 N2 C C C C N3 N3 D N1 N1 N1 N1 N1 N1 N1
OD
OU 3 3

Fryderyk Darnowski, Andrzej Chojnacki, Writing and Deleting files on hard drives with NTFS

 10

All of the above files together occupy 2509
clusters and fit ideally into the third unallocated
area. All tests were done after fresh formatting
of the volume.

Tab. 19. Files that are on the partition just after
formatting

id Name 1st
cluster

Last
cluster

size
(clusters) notes

1 $BOOT 0 1 2
2 $MFTMirr 2 2 1
3 $UpCase 3 34 32

4 ($secure) 35 1
Created
before
first write

5 #1
unallocated 36 43 8

6 Reserved 44 1
7 $TxLog2 45 2604 2560

8 #2
unallocated 2605 251295 248691 approx.

970MB
9 $LogFile 251296 256703 5408
10 $Secure 256704 256768 628
11 $AttrDef 256769 256769 1
12 $Tops 256770 257025 256
13 $TxfLog.blf 257026 257041 16
14 $TxfLog1 257042 259601 2560
15 $TxfLog 259602 1 Folder

16 #3
unallocated 259603 262111 2509 approx.

10MB
17 $Bitmap 262112 262141 3584
18 Reserved 262142 262143 2
19 $MFT 262144 262207 64

20 Reserved 262208 313375 51168

approx.
5% area
reserved
for $MFT

21 unallocated 313376 Ok.
2,6GB

Test 1: all of the above files were written from
biggest to smallest.

The situation after test 1 is presented in
Figure 2.

Fig. 2. Files located on volume after test 1

File-8,25MB.odp was, in line with the BFA
rule, written into the third unallocated area
starting from cluster 259603. The next two files,
File-980KB.pptx and File-548KB.pdf were
written just after. The third unallocated area
shrank to 14 clusters after this operation.
The file 8.clust was written into the first
unallocated area starting from cluster 36 and
occupied it completely. The last two files 4.clust
and 2.clust were written into the remaining third
unallocated area.

Test 2: all of the above files were written from
smallest to biggest.

The files 2.clust and 4.clust were written
into the first unallocated area that shrinks to 2
clusters. Because file 8.clust was too big for
the remainder of the first unallocated area, it was
written into the third one. Directly after all the
other files, File-548KB.pdf, File-980KB.pptx and
File-8,25MB.odp, were written (Figure 3).

Fig. 3. Files located on volume after test 2

Test 3: filling first and third unallocated area.

First, we copied the file 8.clust. The file

occupied the first unallocated area completely.
Next, the files 2.clust, 4.clust, 8.clust, File-
548KB.pdf, File-980KB.pptx and File-
8,25MB.odp were copied, which fully occupied
the third unallocated. After this operation, only
two unallocated areas were left on the volume,
with 970MB and 2.6GB sizes respectively. The
folder, containing 103 jpg files, 240MB size in
total, was copied. The files were inserted into the
second unallocated area and occupied clusters
2605-64156. The distribution of data on the
volume is presented in Figure 4.

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 8 5−15 (2018)

 11

Occupied
Area

0-2604

JPG
files

2605-
-64156

#1
unallocated

area
64157-

-251295

Occupied
Area

251296-
-313375

2#
unallocated

area
313376-

Fig. 4. Position of files after completing test 3

Based on this test we can assume that

copying files that are similar in size will fill an
unallocated area as follows: the files are copied
one by one, and are located next to each other.
The detailed view of the position of the last files
is presented in Figure 5. The files are sorted by
their first cluster.

Fig. 5. Detailed view of the position of the last copied
files from test 3 (WinHex)

Test 4: Deleting and writing files using
the outcome from test 3.

After successfully completing test three
the following operations were executed:
• deleting of files: DSC_6338.JPG,

DSC_6339.JPG, DSC_6340. JPG,
• writing files: 1.TXT, File1,
• deleting of file: 1.TXT,
• writing of file: File2.

The representation of $MFT for the files in

interest is shown on Table 20 and corresponds to
the situation shown in Figure 5. The location of
the files in interest is presented in Table 21.

Tab. 20. Changes in $MFT during test 4. Starting
situation

$MFT

id a b c d e
140 DSC_6336 60662 641 0 0
141 DSC_6337 61303 604 0 0
142 DSC_6338 61907 538 0 0
143 DSC_6339 62445 556 0 0
144 DSC_6340 63001 630 0 0
145 DSC_6341 63631 526 0 0

Tab. 21. Position of files during test 4. Starting
situation

OA DSC_6336 DSC_6337 DSC_6338 DSC_6339 DSC_6340 DSC_6341
OD
OU

After completing the first deletion of 4 files,

nothing changes on the drive except an update in
$MFT: status flags are set to “delete” and delete
counters are increased (Table 22). Files
DSC_6338.JPG DSC_6339.JPG, DSC_6340.
JPG cease being visible to the user and are
transferred to OD (Table 23).

Tab. 22. Changes in $MFT during test 4 after
deleting DSC_6338, DSC_6339, DSC_6340

$MFT

id a b c d e
140 DSC_6336 60662 641 0 0
141 DSC_6337 61303 604 0 0
142 DSC_6338 61907 538 1 1
143 DSC_6339 62445 556 1 1
144 DSC_6340 63001 630 1 1
145 DSC_6341 63631 526 0 0

Tab. 23. Position of files during test 4 after deleting
DSC_6338, DSC_6339, DSC_6340

OA DSC_6336 DSC_6337 DSC_6341
OD DSC_6338 DSC_6339 DSC_6340
OU

Writing file 1.TXT of 180 clusters in size

will take place after file DSC_6341.JPG (rule
d)). The update of $MFT happens and, because
there are no other deleted files on the volume
other than the three we just deleted, the file
1.TXT will be given record 142 in $MFT
(Table 24). The overwriting of record 142 means
the system loses the information about file
DSC_6338.JPG therefore its data is shifted to
the OU (Table 25).

Tab. 24. Changes in $MFT during test 4 after
writing 1.TXT

$MFT
id a b c d e

140 DSC_6336 60662 641 0 0
141 DSC_6337 61303 604 0 0
142 1.TXT 64157 180 0 1
143 DSC_6339 62445 556 1 1
144 DSC_6340 63001 630 1 1
145 DSC_6341 63631 526 0 0

Tab. 25. Position of files during test 4 after
writing 1.TXT

OA DSC_6336 DSC_6337 DSC_6341 1.TXT
OD DSC_6339 DSC_6340
OU DSC_6338

Fryderyk Darnowski, Andrzej Chojnacki, Writing and Deleting files on hard drives with NTFS

 12

In the next step File1 is written. File1 is
small enough (453 cluster) to fit into the
unallocated area created from file
DSC_6338.JPG (538 clusters). Writing File1
overwrites record 143 during $MFT update
(Table 26). After update, file DSC_6339.JPG is
moved to OU (Table 27).

Tab. 26. Changes in $MFT during test 4 after

writing File1

$MFT
id a b c d e

140 DSC_6336 60662 641 0 0
141 DSC_6337 61303 604 0 0
142 1.TXT 64157 180 0 1
143 File1 61907 453 0 1
144 DSC_6340 63001 630 1 1
145 DSC_6341 63631 526 0 0

Tab. 27. Position of files during test 4 after
writing File1

OA DSC_6336 DSC_6337 File1 DSC_6341 1.TXT
OD DSC_6340
OU DSC_6339

Deleting file 1.TXT only updates $MFT

(Table 28) and moves data to OD (Table 29).

Tab. 28. Changes in $MFT during test 4 after
deleting 1.TXT

$MFT

id a b c d e
140 DSC_6336 60662 641 0 0
141 DSC_6337 61303 604 0 0
142 1.TXT 61907 538 1 2
143 File1 61907 453 0 1
144 DSC_6340 63001 630 1 1
145 DSC_6341 63631 526 0 0

Tab. 29. Position of files during test 4 after
deleting 1.TXT

OA DSC_6336 DSC_6337 File1 DSC_6341
OD DSC_6340 1.TXT
OU DSC_6339

The size of File2 is 544 clusters and is

smaller than the unallocated area from the
remaining part of DSC_6338.JPG and
DSC_6339.JPG. Once again the record 142 will
be overwritten in $MFT (Table 30) and therefore
file 1.TXT is lost by the system and moved to OU
(Table 31).

Tab. 30. Changes in $MFT during test 4 after
writing File2

$MFT
id a b c d e

140 DSC_6336 60662 641 0 0
141 DSC_6337 61303 604 0 0
142 File2 62360 544 0 2
143 File1 61907 453 0 1
144 DSC_6340 63001 630 1 1
145 DSC_6341 63631 526 0 0

Tab. 31. Position of files during test 4 after
writing File2

OA DSC_6336 DSC_6337 File1 File2 DSC_6341
OD DSC_6340
OU 1.TXT

It is important to mention at this point that

no data is moved or copied to the volume when
we, say, move or transfer to OU or OD. It only
represents a change in the distribution table
explained in chapters 2-8. The detailed view of
the position of files for the last four operations is
shown in Figure 6-9 (WinHex).

Fig. 6. Position of files during test 4,
after writing 1.TXT

Fig. 7. Position of files during test 4,
after writing File1

Fig. 8. Position of files during test 4,
after deleting 1.TXT

Fig. 9. Position of files during test 4,
after writing File2

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 8 5−15 (2018)

 13

In the figures 9, the files are sorted by their
$MFT index, so the view from WinHex
corresponds to tables 24, 26, 28 and 30.
This proofs that our concept of writes and
deletes presented in chapter 3 is valid, as the
changes in real NTFS Volume (data area and
$MFT itself) are exactly the same as that
predicted by our algorithm (tab. 20-31).

10. Summary

As described in chapter 1, all modern computer
forensic software uses very sophisticated search
algorithms on unallocated areas to find deleted
files. All of these algorithms assume the pseudo-
random position of files. With this assumption,
it is not possible to narrow, with confidence,
the search area. Algorithms have to search
through all unallocated space.

This article proposes to thinking of
the NTFS allocation algorithm as a Finite-
-State Machine (Gladyshev 2004 [10],
Gladyshev 2005 [11]). With a Finite-State
Machine (FSM) approach, we assumed that all
of the operations start only when the previous
ones finish. Therefore, knowing the current state
of disk Sn, we can predict the location of a new
file to be written (record of $MFT file and data
area), if we know the file’s size. That means
that, with a given file size, we know exactly
what the state Sn+1 will look like.

Sn → write(x) → Sn+1

What is more, having a sequence of known

writes and deletes we can predict the location of
every file in the sequence.

Sn → write(x) → Sn+1 → write(y) → Sn+2

As shown in this article, the above was

proven valid. So now, the question arises: if we
know the state of the disk “now”, is it possible to
reconstruct the possible state Sn x operations
back?

S’
n ← write(x’) ← S’

n+1 ← write(y’) ← Sn+2

Having resolved possible sequences:

write(x’), write(y’), delete(x’) …. write(z’)
for the first time in digital forensics, we would
know:
• if file y’ exists, or has been partially or

totally overwritten,
• the time of writing and deleting of the file

y’ (written after file x’, deleted before
writing file z’),

• if any recovered file belongs to this Volume
or is left-over from the previous one (before
formatting).
Olivier [14], states that computing

complexity might be a challenge in FSM but
as Gladyshev [11] demonstrated with a simple
case, we think that now, with advances in other
areas of Digital Forensics, this method is finally
ready to be used as complement to the many
other existing methods [5]. Some methods
described in chapter 1 can be used with
cooperation with FSM, scaling down
the computer complexity:
• scanning unallocated areas: deciding which

portions of a disk have content and which
are empty,

• standard header-footer carving in content
full area: finding files that are easily
recoverable,

• statistical analysis and cluster sampling of
the remaining area and grouping it by
category.
The next step in our work will be to

construct a mathematical model for the writing
and deleting process. This model will be used to
create a carving and analyzing tool which
exploits the NTFS file writing algorithm.

11. Known limitations

The proposed model is true only when
the system knows the size of file that is being
copied. If the file size is unknown, the stream is
created with some starting size while the data is
copied. If that starting size is filled, then the next
data part, bigger than the previous one, is
created. The algorithm of allocating next data
parts continues until maximum (selected by
system) part size is reached. The allocation of
those fragments is most likely BFA but further
research is needed [9].

The FSM approach exploits the core of file
systems architecture which can be traced way
back to the 1970’s.

In that era “a hard disk” was a big magnetic
tape with one head available to do one operation
at a time. This is not true of the modern NTFS
as it has built-in mechanisms for performance
improvement, system checks and many other
system services (logging, indexing etc.). These
services run in the background, disrupting
the idea of one operation at a time. Thankfully,
the system reserves more area for future work
than it needs, so we can assume system area as
static with fixed size (for at least some period of
time) and remove it from consideration.
This assumption is even truer for external drives

Fryderyk Darnowski, Andrzej Chojnacki, Writing and Deleting files on hard drives with NTFS

 14

as writes, created there by operating system, are
minimal.

We are approaching an SSD-only era, as
more and more new computers are equipped
only with SSD disks. The actual tests were not
performed on solid-state drives but their internal
algorithms of garbage collection and TRIM
basically wipe the content of deleted files [4].
The allocation of clusters may still be BFA but
recovering deleted files is mostly not possible
due to TRIM wiping.

The Finite-state-machine approach is
probably not possible to implement with new
File Systems. For example Apple New Files
System (APFS) [8] was designed from scratch to
ignore all limitation of previous file systems as it
was designed with SSD and parallel writes/reads
in mind.

12. Bibliography

[1] Amirani M.C., Toorani M., Shirazi A.A.B,

“A new approach to content-based file type
detection”, Proceedings of the 13th IEEE
Symposium on Computers and
Communications (ISCC‘08), pp. 1103–
1108, 2008.

[2] Bayne E., Ferguson R.I., Sampson A.T.,
“OpenForensics: A digital forensics GPU
pattern matching approach for the 21st
century”, Digital Investigation, Vol. 24,
Supplement, S29–S37 (2018).

[3] Carrier B., File System Forensic Analysis,
Addison Wesley Professional, New York,
2005.

[4] Darnowski F., “Bezpieczne usuwanie
danych z dysków SSD”, in: Przestępczość
Teleinformatyczna, str. 109–115, Szczytno
2011.

[5] Darnowski F., Chojnacki A., “Selected
Methods of File Carving and Analysis of
Digital Storage Media in Computer
Forensic”, Przegląd Teleinformatyczny,
T.3(21) Nr 1-2 (39) 2015.

[6] Garfinkel S.L., “Carving contiguous and
fragmented files with fast object
validation”, Digital Investigation, Vol. 4(1),
pp. 2–12, 2007.

[7] Garfinkel S. L., “Random sampling with
sector identification”, Naval Postgraduate
School presentation, 2010.

[8] Garfinkel S. L., Nelson A., White D.,
Roussev V., “Using purpose-built functions
and block hashes to enable small block and
sub-file forensics”, Digital Investigation,
Vol. 7, 13–23 (2010).

[9] Ghotge V., Nema P., “Description of
the Cluster Preallocation Algorithm in
the NTFS File System”, Microsoft Product
Support Services White Paper, 2004.

[10] Gladyshev P., Patel A., “Finite State
Machine Approach to Digital Event
Reconstruction”, Digital Investigation,
Vol. 1, Issue 2, 130–149 (2004).

[11] Gladyshev P., Patel A., “Finite state
machine analysis of a blackmail
investigation”, International Journal of
Digital Evidence, Vol. 4, Issue 1, 1–13
(2005).

[12] Hansen K. H., Toolan F., “Decoding the
APFS file system”, Digital Investigation,
Vol. 22, 107–132 (2017).

[13] http://www.netmarketshare.com/(accessed
22.01.2019).

[14] Olivier M., “Scientific theory of digital
forensic”, in: Advances in Digital Forensics
XII: 12th IFIP WG 11.9 International
Conference, New Delhi, January 4–6, 2016,
pp. 3–24.

[15] Penrose P., Buchanan W.J., Macfarlane R.,
“Fast contraband detection in large capacity
disk drives”, Digital Investigation, 12 (S1),
S22-S29 (2015).

[16] Roussev V. Chow K. P., Shenoi S., “Data
fingerprinting with similarity digests”, in:
Advances in digital forensics VI, Sixth IFIP
WG 11.9 International Conference on
Digital Forensics, pp. 207–226, Springer
Berlin Heidelberg, 2010.

[17] Roussev V., Quates C., Martell R., “Real-
-time digital forensics and triage”, Digital
Investigation, Vol. 10, Issue 2, 158–167,
(2013).

[18] Škrbina N., Stojanovski T., “Using parallel
processing for file carving”, Proceedings of
the Nineth Conference on Informatics and
Information Technology (CIIT 2012),
pp. 175–179, 2012.

[19] Wei Y., Zheng N., Xu M., “An automatic
Carving Method for RAR File Based on
Content and Structure”, Proceedings of
the 2010 Second International Conference
on Information Technology and Computer
Science, pp. 68–72, IEEE, 2010.

[20] Veenman C., “Statistical Disk Cluster
Classification for File Carving”, in:
Proceedings of the Third International
Symposium on Information Assurance and
Security, pp. 393–398, 2007.

[21] Young J., Foster K., Garfinkel S., Fairbanks
K., “Distinct sector hashes for target file
detection”, Computer, Vol. 45, Issue 12,
28–35 (2012).

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 8 5−15 (2018)

 15

Zapis i kasowanie plików na twardych dyskach z systemem plików NTFS

F. DARNOWSKI, A. CHOJNACKI

Celem artykułu jest przedstawienie szczegółowych informacji na temat zapisu oraz kasowania plików na
dyskach twardych wyposażonych w system plików NTFS (ang. New Technology File System). Najważniejsze
przy tym są: algorytm wykorzystywany przez komputer do zapisu danych BFA (ang. Best Fit Algorithm) oraz
algorytm FFT (ang. First Free Algorithm) aktualizacji pliku $MFT (ang. Master File Table). Zaprezentowano
pewną konwencję opisu obszarów na dysku twardym. Przedstawione zasady zostały zweryfikowane na
przykładach.

Słowa kluczowe: dysk twardy, NTFS, $MFT.

