PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative study of DC/DC electric vehicle charging system with conventional transformer and planar transformer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an analysis of electric vehicle charging station operation based on a dual active bridge topology. Two cases are considered: one with the use of a medium frequency planar transformer, the other with a conventional Litz winding transformer. An analysiswas performed using both solutions in order to compare the performance characteristics of the system for both cases and to present the differences between each transformer solution. The analysis was based on tests carried out on the full-scale model of an electric vehicle charging station, which is the result of the project "Electric vehicle charging system integrated with lighting infrastructure" realized by the Department of Drives and Electrical Machines, Lublin University of Technology. The results presented in the paper show that the conventional transformer used in the research achieved better results than the planar transformer. Based on the results obtained, the validity of using both solutions in electric vehicle charging stations was considered.
Rocznik
Strony
339--355
Opis fizyczny
Bibliogr. 40 poz., rys., tab., zdj.
Twórcy
  • Lublin University of Technology ul. Nadbystrzycka 38d, 20-618 Lublin, Poland
autor
  • Lublin University of Technology ul. Nadbystrzycka 38d, 20-618 Lublin, Poland
  • Lublin University of Technology ul. Nadbystrzycka 38d, 20-618 Lublin, Poland
Bibliografia
  • [1] Zaferanlouei S., Zecchino A., Farahmand H., Impact of large-scale EV integration and fast chargers in a Norwegian LV grid, The Journal of Engineering (2019), DOI: 10.1049/joe.2018.9318.
  • [2] Khan M.M.H., Hossain A., Ullah A., Hossain Lipu M.S., Siddiquee S.M.S., Alam M.S., Jamal T., Ahmed H., Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment, Sustainability, vol. 13, 10943 (2021), DOI: 10.3390/su131910943.
  • [3] Knezović K., Marinelli M., Zecchino A., Andersen P., Traeholt C., Supporting involvement of electric vehicles in distribution grids: Lowering the barriers for a proactive integration, Energy, vol. 134, pp. 458–468 (2017), DOI: 10.1016/j.energy.2017.06.075.
  • [4] Mu M., Xue L., Boroyevich D., Hughes B., Mattavelli P., Design of integrated transformer and inductor for high frequency dual active bridge GaN Charger for PHEV, IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 579–585 (2015), DOI: 10.1109/APEC.2015.7104407.
  • [5] Zou S., Lu J., Mallik A., Khaligh A., Modeling and Optimization of an Integrated Transformer for Electric Vehicle On-Board Charger Applications, in IEEE Transactions on Transportation Electrification, vol. 4, no. 2, pp. 355–363 (2018), DOI: 10.1109/TTE.2018.2804328.
  • [6] Barrios E.L., Urtasun A., Ursúa A., Marroyo L., Sanchis P., High-Frequency Power Transformers with Foil Windings: Maximum Interleaving and Optimal Design, IEEE Transactions on Power Electronics, vol. 30, no. 10, pp. 5712–5723 (2015), DOI: 10.1109/TPEL.2014.2368832.
  • [7] Agarwal R., Martin S., Shi Y., Li H., High Frequency Transformer Design for Medium Voltage Shipboard DC-DC Converter, IEEE Electric Ship Technologies Symposium (ESTS), pp. 499–504 (2019), DOI: 10.1109/ESTS.2019.8847922.
  • [8] Zhang Z., Liu C., Wang M., Si Y., Liu Y., Lei Q., High-Efficiency High-Power-Density CLLC Resonant Converter with Low-Stray-Capacitance and Well-Heat-Dissipated Planar Transformer for EV On-Board Charger, IEEE Transactions on Power Electronics, vol. 35, no. 10, pp. 10831–10851 (2020), DOI: 10.1109/TPEL.2020.2980313.
  • [9] Wang H., Shang M., Shu D., Design Considerations of Efficiency Enhanced LLC PEV Charger Using Reconfigurable Transformer, IEEE Transactions on Vehicular Technology, vol. 68, no. 9, pp. 8642–8651 (2019), DOI: 10.1109/TVT.2019.2930551.
  • [10] Cui B., Xue P., Jiang X., Elimination of High Frequency Oscillation in Dual Active Bridge Converters by dv/dt Optimization, IEEE Access, vol. 7, pp. 55554–55564 (2019), DOI: 10.1109/AC-CESS.2019.2910597.
  • [11] Qin Z., Shen Z., Blaabjerg F., Bauer P., Transformer Current Ringing in Dual Active Bridge Converters, in IEEE Transactions on Industrial Electronics, vol. 68, no. 12, pp. 12130–12140 (2021), DOI: 10.1109/TIE.2020.3040681.
  • [12] Ropoteanu C., Codreanu N., Ionescu C., Thermal investigation of a planar core power transformer, 39th International Spring Seminar on Electronics Technology (ISSE) (2016), DOI: 10.1109/ISSE.2016.7563171.
  • [13] Loyaua V., Lo Bue M., Mazaleyrat F., Measurement of magnetic losses by thermal method applied to power ferrites at high level of induction and frequency, Review of Scientific Instruments (2009), DOI: 10.1063/1.3079382.
  • [14] Górski K., Górecki K., Modelling thermal properties of planar transformers, Przegląd Elektrotechniczny (2017), DOI: 10.15199/48.2017.02.45.
  • [15] Górski K., Górecki K., Non-linear thermal model of planar transformers, 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition (2017), DOI: 10.23919/EMPC.2017.8346913.354 M. Rudawski, K. Fatyga, Ł. Kwaśny Arch. Elect. Eng.
  • [16] Barlik R., Nowak M., Grzejszczak P., Zdanowski M., Estimation of power losses in a high-frequency planar transformer using a thermal camera, Archives of Electrical Engineering (2016), DOI: 10.1515/aee-2016-0044.
  • [17] Tomczuk B., Koteras D., 3D field analysis in 3-phase amorphous modular transformer under increased frequency operation (2015), DOI: 10.1515/aee-2015-0011.
  • [18] Łyskawiński W., Sujka P., Szeląg W., Barański M., Numerical analysis of hysteresis loss in pulse transformer, Archives of Electrical Engineering (2011), DOI: 10.2478/v10171-011-0018-3.
  • [19] Pavlovsky M., de Haan S.D., Ferreira J., Reaching High Power Density in Multikilowatt DC–DC Converters with Galvanic Isolation, IEEE Transactions on Power Electronics (2009), DOI: 10.1109/TPEL.2008.2008650.
  • [20] Wilk A., Michna M., Simulation of the remanence influence on the transient states in a single-phase multiwinding transformer, Archives of Electrical Engineering (2016), DOI: 66.10.1515/aee-2017-0004.
  • [21] Wojda R., Thermal analytical winding size optimization for different conductor shape, Archives of Electrical Engineering (2015), DOI: 64.10.1515/aee-2015-0017.
  • [22] Faraji R., Adib E., Farzanehfard H., Soft-switched non-isolated high step-up multi-port DC-DC converter for hybrid energy system with minimum number of switches, International Journal of Electrical Power & Energy Systems (2019), DOI: 10.1016/j.ijepes.2018.10.038.
  • [23] Rodríguez-Lorente A., Barrado A., Calderón C., Fernández C., Lázaro A., Non-inverting and Non-isolated Magnetically Coupled Buck–Boost Bidirectional DC–DC Converter, IEEE Transactions on Power Electronics (2020), DOI: 10.1109/TPEL.2020.2984202.
  • [24] Rodríguez-Lorente A., Barrado A., Calderón C., Fernández C., Lázaro A., Non-inverting and Non-isolated Magnetically Coupled Buck–Boost Bidirectional DC–DC Converter, IEEE Transactions on Power Electronics (2020), DOI: 10.1109/TPEL.2020.2984202.
  • [25] Lyu D., Soeiro T.B., Bauer P., Impacts of Different Charging Strategies on the Electric Vehicle Battery Charger Circuit Using Phase-Shift Full-Bridge Converter, IEEE 19th International Power Electronics and Motion Control Conference (PEMC), pp. 256–263 (2021), DOI: 10.1109/PEMC48073.2021.9432497.
  • [26] Lee I., Hybrid DC–DC Converter with Phase-Shift or Frequency Modulation for NEV Battery Charger, IEEE Transactions on Industrial Electronics, vol. 63, no. 2, pp. 884–893 (2016), DOI: 10.1109/TIE.2015.2477345.
  • [27] Yu W., Lai J.-S., Lai W.–H., Wan H., Hybrid Resonant and PWM Converter with High Efficiency and Full Soft-Switching Range, IEEE Transactions on Power Electronics, vol. 27, no. 12, pp. 4925–4933 (2012), DOI: 10.1109/TPEL.2012.2192293.
  • [28] Liu C., High-Efficiency Hybrid Full-Bridge–Half-Bridge Converter with Shared ZVS Lagging Leg and Dual Outputs in Series, IEEE Transactions on Power Electronics, vol. 28, no. 2, pp. 849–861 (2013), DOI: 10.1109/TPEL.2012.2205019.
  • [29] Fatyga K., Zieliński D., Comparison of main control strategies for DC/DC stage of bidirectional vehicle charger, 2017 International Symposium on Electrical Machines (SME), pp. 1–4 (2017), DOI: 10.1109/ISEM.2017.7993585.
  • [30] Williamson S.S., Rathore A.K., Musavi F., Industrial Electronics for Electric Transportation: Current State-of-the-Art and Future Challenges, IEEE Transactions on Industrial Electronics, vol. 62, no. 5, pp. 3021–3032 (2015), DOI: 10.1109/TIE.2015.2409052.
  • [31] Das P., Pahlevaninezhad M., Drobnik J., Moschopoulos G., Jain P.K., A Nonlinear Controller Based on a Discrete Energy Function for an AC/DC Boost PFC Converter, IEEE Transactions on Power Electronics, vol. 28, no. 12, pp. 5458–5476 (2013), DOI: 10.1109/TPEL.2012.2232681.
  • [32] Barlik R., Nowak M., Grzejszczak P., Power transfer analysis in a single phase dual active bridge, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 61 (2013), DOI: 10.2478/bpasts-2013-0088.
  • [33] Brinkel N.G.B., Schram W.L., Alskaif T.A., Lampropoulos I., Ioannis van Sark W.G.J.H.M., Should we reinforce the grid? Cost and emission optimization of electric vehicle charging under different transformer limits, Applied Energy, vol. 276, 115285 (2020), DOI: 10.1016/j.apenergy.2020.115285.
  • [34] Venkata V., Bhajana V., Jarzyna W., Fatyga K., Zieliński D., Kwaśny Ł., Performance of a SiC MOSFET based isolated dual active bridge DC-DC converter for electro-mobility applications, Revue Roumaine des Sciences Techniques – Serie Électrotechnique et Énergétique, vol. 64, pp. 383–390 (2020).
  • [35] Ropoteanu C., Svasta P., Ionescu C., A study of losses in planar transformers with different layer structure, IEEE 23rd International Symposium for Design and Technology in Electronic Packaging (SIITME), pp. 255–258 (2017), DOI: 10.1109/SIITME.2017.8259904.
  • [36] Muhammad Y., Advanced topologies and modulation schemes for high-efficiency operation of dual-active-bridge series-resonant DC-DC converter (2018).
  • [37] Yade O., Gauthier J., Lin-Shi X., Gendrin M., Zaoui A., Modulation strategy for a Dual Active Bridge converter using Model Predictive Control, IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics (2015), DOI: 10.1109/PRECEDE.2015.7395578.
  • [38] Yan Y., Bai H., Foote A., Wang W., Securing Full-Power-Range Zero-Voltage Switching in Both Steady-State and Transient Operations for a Dual-Active-Bridge-Based Bidirectional Electric Vehicle Charger, IEEE Transactions on Power Electronics (2020), DOI: 10.1109/TPEL.2019.2955896.
  • [39] Jarzyna W., Zielinski D., The impact of converter’s synchronization during FRT voltage recovery in two-phase short circuits, Selected Problems of Electrical Engineering and Electronics (WZEE), pp. 1–6 (2015), DOI: 10.1109/WZEE.2015.7394043.
  • [40] Jarzyna W., Zieliński D., Gopakumar K., An evaluation of the accuracy of inverter sync angle during the grid’s disturbances, Metrology and Measurement Systems, vol. 27, no. 2, pp. 355–371 (2020), DOI: 10.24425/mms.2020.132780.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e7086d8-5848-4036-92bc-6ca11cb5daae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.