PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ontology Extraction from Software Requirements Using Named-Entity Recognition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the software playing a key role in most of the modern, complex systems it is extremely important to create and keep the software requirements precise and non-ambiguous. One of the key elements to achieve such a goal is to define the terms used in a requirement in a precise way. The aim of this study is to verify if the commercially available tools for natural language processing (NLP) can be used to create an automated process to identify whether the term used in a requirement is linked with a proper definition. We found out, that with a relatively small effort it is possible to create a model that detects the domain specific terms in the software requirements with a precision of 87 %. Using such model it is possible to determine if the term is followed by a link to a definition.
Twórcy
  • Department of Automatic Control and Robotics, Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland
  • Tritem Sp. z o.o., Ligocka 103/7, 40-568 Katowice, Poland
  • Department of Automatic Control and Robotics, Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland
Bibliografia
  • 1. The European Parliament and The Council of the European Union. Directive (EU) 2018/2002 of the amending Directive 2012/27/EU on energy efficiency, 2018.
  • 2. Kosindrdec N., Daengdej J. A Test Case Generation Process and Technique. Journal of Software Engineering. 2010; 4: 265–287.
  • 3. Kocerka J., Krzeslak M., Galuszka A. Analysing Quality of Textual Requirements Using Natural Language Processing: A Literature Review. In: 2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR) 2018.
  • 4. Mich L., Franch M., Novi Inverardi P. Market research for requirements analysis using linguistictools. Requirements Engineering. 2004; 9: 40–56.
  • 5. International Council on Systems Engineering. Guide for Writing Requirements, 2019.
  • 6. Explosion. Spacy – Industrial-Strength Natural Language Processing. [Online; accessed 25 November 2021]. Available: https://spacy.io/.
  • 7. Wikipedia. Category:Rail transport – Wikipedia, The Free Encyclopedia. [Online; accessed 12 December 2021]. Available: https://en.wikipedia.org/wiki/Category:Rail_transport.
  • 8. Trask A., Michalak P., Liu J. sense2vec – A Fast and Accurate Method for Word Sense Disambiguation In Neural Word Embeddings. CoRR 2015; abs/1511.06388.
  • 9. Bojanowski P., Grave E., Joulin A., Mikolov T. Enriching Word Vectors with Subword Information. CoRR 2016. abs/1607.04606.
  • 10. Explosion. Prodigy – An annotation tool for AI, Machine Learning and NLP. [Online; accessed 25 November 2021]. Available: https://prodi.gy/.
  • 11. Lample G., Ballesteros M., Subramanian S., Kawakami K., Dyer C. Neural Architectures for Named Entity Recognition. CoRR 2016; abs/1603.01360.
  • 12. Serrà J., Karatzoglou A. Getting deep recommenders fit: Bloom embeddings for sparse binary input/ output networks. CoRR 2017; abs/1706.03993.
  • 13. Denzin N.K., Lincoln Y.S. The SAGE Handbook of Qualitative Research. 5 ed., Sage Publications Ltd., 2017.
  • 14. Pennington J., Socher R., Manning C.D. GloVe: Global Vectors for Word Representation. In: Empirical Methods in Natural Language Processing (EMNLP) 2014.
  • 15. Chinchor N. MUC-4 evaluation metrics. In: Proceedings of the 4th conference on Message understanding – MUC4 1992.
  • 16. Sasaki Y. The truth of the F-measure. 2007.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e6f6993-7fd2-40f5-ad0d-e8c517c7d532
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.