PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biotechnological Reclamation of Oil-Polluted Soils

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the paper was to determine the efficiency of petroleum hydrocarbons (PHs) degradation by developed bacterial consortium during bioremediation of oil-contaminated soils caused by accidental oil spills. The soil samples were collected from three different areas near the Bugruvate field of the Dnieper-Donets oil and gas region, Sumy region, Ukraine. The total petroleum hydrocarbon was determined by conducting measurements using a gravimetric method. Gas chromatographic analysis was performed for determination of polycyclic aromatic hydrocarbons. The level of oil contamination follows an increasing preferential order: Sample 1 < Sample 2 < Sample 3 (5, 10 and 15 g∙kg-1, respectively). The soil samples comprised different concentrations of PHs including n-alkanes, fluorine, anthracene, phenanthrene, pyrene, toluene, xylene, benzene and other PHs. The results of research indicated that the maximum oil degradation rate at the level of 80% was set at Cin within 4–8 g∙kg-1 and τ = 70 days, under natural condition. In order to improve the efficiency of bioremediation of oil-contaminated soils, bioaugmentation was performed using the developed preparation of such bacteria and fungi strains as Pseudoxanthomonas spadix, Pseudomonas aeruginosa, Rhodococcus opacus, Acinetobacter baumannii, Bacillus cereus, Actinomyces sp., Mycobacterium flavescens. The results showed 100% of oil concentration was assimilated after 20, 25 and 35 days for the soil samples with initial hydrocarbon concentrations at the level 5, 10 and 15 g∙kg-1, respectively. The bacterial consortium application (bioaugmentation) exhibited high efficiency compared to the indigenous microflora in the oil biodegradation. The optimal growth condition for the bacteria in this study can be set as follows: pH = 3–11, wide temperature range 0–35°C.
Twórcy
  • Sumy State University, 2 Rymskogo-Korsakova St., 40007 Sumy, Ukraine
  • Sumy State University, 2 Rymskogo-Korsakova St., 40007 Sumy, Ukraine
  • Sumy State University, 2 Rymskogo-Korsakova St., 40007 Sumy, Ukraine
  • Lviv National Polytechnic University, 12 S. Bandery St., 79013 Lviv, Ukraine
Bibliografia
  • 1. Abdel-Megeed A., Al-Harbi N., Al-Deyab S. 2010. Hexadecane degradation by bacterial strains isolated from contaminated soils. African Journal of Biotechnology, 9(44), 7487–7494. https://doi.org/10.5897/ajb10.638.
  • 2. Ablieieva I. 2020. Theoretical substantiation of the petroleum hydrocarbons destruction by specific microflora using anaerobic digestate. Environmental Problems, 5(4), 191–201. https://doi.org/10.23939/ep2020.04.191.
  • 3. Ablieieva I.Yu., Plyatsuk L.D. 2016. The immobilization of heavy metals during drilling sludge utilization. Environmental Technology & Innovation, 6, 123–131. https://doi.org/10.1016/j.eti.2016.08.004.
  • 4. Agwu O.A., Ilori M.O., Nwachukwu S.U. 2013. Utilization of Drilling Fluid Base Oil Hydrocarbons by Microorganisms Isolated from Diesel-Polluted Soil. Soil and Sediment Contamination, 22(7), 817–828. https://doi.org/10.1080/15320383.2013.768205.
  • 5. Alhassan H.M., Fagge S.A. 2013. Effects of crude oil, low point pour fuel oil and vacuum gas oil contamination on the geotechnical properties of sand, clay and laterite soils. International Journal of Engineering Research and Applications, 3, 1947–1954.
  • 6. Al-Thukair A.A., Malik, K. 2016. Pyrene metabolism by the novel bacterial strains Burkholderia fungorum (T3A13001) and Caulobacter sp (T2A12002) isolated from an oil-polluted site in the Arabian Gulf. International Biodeterioration and Biodegradation, 110, 32–37. https://doi.org/10.1016/j.ibiod.2016.02.005.
  • 7. Bachmann R.T., Johnson A.C., Edyvean, R.G.J. 2014. Biotechnology in the petroleum industry: An overview. International Biodeterioration & Biodegradation, 86, 225–237.
  • 8. Basak S.P., Sarkar P., Pal P. 2014. Isolation and characterization of phenol utilizing bacteria from industrial effluent-contaminated soil and kinetic evaluation of their biodegradation potential. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 49(1), 67–77. https://doi.org/10.1080/10934529.2013.824304.
  • 9. Brown D.M., Okoro S., Gils J. Van, Spanning R. Van, Bonte M., Hutchings T., Linden O., Egbuche U., Bye K., Smith J.W.N. 2017. Comparison of landfarming amendments to improve bioremediation of petroleum hydrocarbons in Niger Delta soils. Science of the Total Environment, 596–597, 284–292. https://doi.org/10.1016/j.scitotenv.2017.04.072.
  • 10. Brzeszcz J., Kaszycki P. 2018. Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: an undervalued strategy for metabolic diversity and flexibility. Biodegradation, 29(4), 359-407. https://doi.org/10.1007/s10532-018-9837-x.
  • 11. Büyükgüngör H., Kurnaz S. 2016. Bioremediation of Total Petroleum Hydrocarbons in Crude Oil Contaminated Soils obtained from Southeast Anatolia. Acta Biologica Turcica, 29, 55–58.
  • 12. Das N., Chandran P. 2011. Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview. Biotechnology Research International, 2011, 13. https://doi.org/10.4061/2011/941810.
  • 13. Das P., Yang X.-P., Ma L. 2014. Analysis of biosurfactants from industrially viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect emulsification property and antimicrobial activity. Frontiers in microbiology, 5(696). https://doi.org/10.3389/fmicb.2014.00696.
  • 14. Dean-Ross D., Moody J., Cerniglia C. E. 2002. Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. FEMS Microbiology Ecology, 41(1), 1–7. https://doi.org/10.1016/S0168-6496(02)00198-8.
  • 15. Dindar E., Sagban F.O.T., Baskaya H.S. 2015. Variations of soil enzyme activities in petroleum-hydrocarbon contaminated soil. International Biodeterioration & Biodegradation, 105, 268-275. http://dx.doi.org/10.1016/j.ibiod.2015.09.011.
  • 16. Ebadi A.A., Sima N.A., Olamaee M. 2017. Effective bioremediation of a petroleum-polluted saline soil by a surfactant-producing Pseudomonas aeruginosa consortium. Journal of advanced research, 8 (6), 627–633.
  • 17. El-Borai A.M., Eltayeb K.M., Mostafa A.R., ElAssar S.A. 2016. Biodegradation of industrial oil-polluted wastewater in Egypt by bacterial consortium immobilized in different types of carriers. Polish Journal of Environmental Studies, 25(5), 1901–1909. https://doi.org/10.15244/pjoes/62301.
  • 18. Goudarztalejerdi A., Tabatabaei M., Eskandari M.H., Mowla D., Iraji A. 2015. Evaluation of bioremediation potential and biopolymer production of pseudomonads isolated from petroleum hydrocarbon-contaminated areas. International Journal of Environmental Science and Technology, 12, 2801–2808. https://doi.org/10.1007/s13762-015-0779-0.
  • 19. Hadibarata T., Kristanti R.A., Fulazzaky M.A., Nugroho A.E. 2012. Characterization of pyrene biodegradation by white-rot fungus Polyporus sp. S133. Biotechnology and Applied Biochemistry, 59 (6), 465–470. https://doi.org/10.1002/bab.1048.
  • 20. Heydarnezhad F., Hoodaji M., Shahriarinour M., Tahmourespour A., Shariati S. 2018. Optimizing toluene degradation by bacterial strain isolated from oil-polluted soils. Polish Journal of Environmental Studies, 27(2), 655–663. https://doi.org/10.15244/pjoes/75811.
  • 21. Janbandhu A., Fulekar M.H. 2011. Biodegradation of phenanthrene using adapted microbial consortium isolated from petrochemical contaminated environment. Journal of Hazardous Materials, 187 (1–3), 333–340. https://doi.org/10.1016/j.jhazmat.2011.01.034.
  • 22. Martirani-Von Abercron S.M., Marín P., SolsonaFerraz M., Castañeda-Cataña M.A., Marqués S. 2017. Naphthalene biodegradation under oxygenlimiting conditions: community dynamics and the relevance of biofilm-forming capacity. Microbial Biotechnology, 10(6), 1781–1796. https://doi.org/10.1111/1751-7915.12842.
  • 23. Mohsenzadeh F., Rad C.A., Akbari M. 2012. Evaluation of oil removal efficiency and enzymatic activity in some fungal strain for bioremediation of petroleum – polluted soil. Iranian Journal of Environmental Health Science & Engineering, 9 (26). https://doi.org/10.1186/1735-2746-9.
  • 24. Mojarad M., Alemzadeh A., Ghoreishi G., Javaheri M. 2016. Kerosene biodegradation ability and characterization of bacteria isolated from oil-polluted soil and water. Journal of Environmental Chemical Engineering, 4(4), 4323–4329. https://doi.org/10.1016/j.jece.2016.09.035.
  • 25. Nasehi S.A., Uromeihy A., Nikudel M.R., Morsali A. 2016. Influence of gas oil contamination on geotechnical properties of fine and coarse-grained soils. Geotechnical and Geological Engineering, 34, 333–345.
  • 26. Niazy Z., Hassanshahian M., Ataei A. 2016. Isolation and characterization of diesel-degrading Pseudomonas strains from diesel-contaminated soils in Iran (Fars province). Pollution, 2(1), 67–75. https://doi.org/10.7508/pj.2016.01.00.
  • 27. Niepceron M., Martin-Laurent F., Crampon M. 2013. GammaProteobacteria as a potential bioindicator of a multiple contamination by polycyclic aromatic hydrocarbons (PAHs) in agricultural soils. Environmental Pollution, 180, 199–205.
  • 28. Nkem B.M., Halimoon N., Yusoff F.M., Johari W.L.W., Zakaria M.P., Medipally S.R., Kannan N. 2016. Isolation, identification and diesel-oil biodegradation capacities of indigenous hydrocarbon-degrading strains of Cellulosimicrobium cellulans and Acinetobacter baumannii from tarball at Terengganu beach, Malaysia. Marine Pollution Bulletin, 107(1), 261–268. https://doi.org/10.1016/j.marpolbul.2016.03.060.
  • 29. Nozari M., Samaei M.R., Dehghani M., Ebrahimi A.A. 2018. Bioremediation of Alkane Hydrocarbons Using Bacterial Consortium From Soil. Health Scope, 7(3), e12524. https://doi.org/10.5812/jhealthscope.12524.
  • 30. Panda S.K., Kar R.N., Panda C.R. 2013. Isolation and identification of petroleum hydrocarbon degrading microorganisms from oil contaminated environment. International Journal of Environmental Sciences, 3(5), 1314–1321.
  • 31. Pathak A., Chauhan A., Blom J., Indest K.J., Jung C.M., Stothard P., Bera G., Green S.J., Ogram A. 2016. Comparative genomics and metabolic analysis reveals peculiar characteristics of rhodococcus opacus strain M213 particularly for naphthalene degradation. PLoS ONE, 11 (8), 1–32. https://doi.org/10.1371/journal.pone.0161032.
  • 32. Raju M.N., Leo R., Herminia S.S., Morán R.E.B., Venkateswarlu K., Laura S. 2017. Biodegradation of Diesel, Crude Oil and Spent Lubricating Oil by Soil Isolates of Bacillus spp. Bulletin of Environmental Contamination and Toxicology, 98(5), 698–705. https://doi.org/10.1007/s00128-017-2039-0.
  • 33. Ramadass K., Megharaj M., Venkateswarlu K., Naidu R. 2018. Bioavailability of weathered hydrocarbons in engine oil-contaminated soil: Impact of bioaugmentation mediated by Pseudomonas spp. on bioremediation. Science of the Total Environment, 636 (May), 968–974. https://doi.org/10.1016/j.scitotenv.2018.04.379.
  • 34. Spini G., Spina F., Pol, A., Blieux A.-L., Regnier T., Gramellini C., Varese G.C., Puglisi E. 2018. Molecular and Microbiological Insights on the Enrichment Procedures for the Isolation of Petroleum Degrading Bacteria and Fungi. Frontiers in Microbiology, 9, 2543 [online]. https://www.frontiersin.org/articles/10.3389/fmicb.2018.02543/full.
  • 35. Suleymanov R.R., Shorina T.S. 2012. Influence of oil pollution on the dynamics of biochemical processes of chernozem (Orenburg region). Izvestiya of the Samara Scientific Center of the Russian Academy of Sciences, 14 (1), 240–243. (in Russian).
  • 36. Tanase A., Ionescu R., Chiciudean I., Vassu T., Stoica I. 2013.Characterization of hydrocarbon-degrading bacterial strains isolated from oil-polluted soil. International Biodeterioration & Biodegradation, 84, 150–154. https://doi.org/10.1016/j.ibiod.2012.05.022.
  • 37. Todorova N.H., Mironova R.S., Karamfilov V.K. 2014. Comparative molecular analysis of bacterial communities inhabiting pristine and polluted with polycyclic aromatic hydrocarbons Black Sea coastal sediments. Marine Pollution Bulletin, 83(1), 231–240. https://doi.org/10.1016/j.marpolbul.2014.03.047.
  • 38. Usman M., Dadrasnia A., Kang T. et al. 2016. Application of biosurfactants in environmental biotechnology; remediation of oil and heavy metal. AIMS Bioengineering, 3(3), 289–304.
  • 39. Vijayakumar S., Saravanan V. 2015. Biosurfactants – types, sources and applications. Research Journal of Microbiology, 10, 181–192.
  • 40. Wang Z., Yang Y., Sun W., Dai Y., Xie S. 2015. Variation of nonylphenol-degrading gene abundance and bacterial community structure in bioaugmented sediment microcosm. Environmental Science and Pollution Research, 22(3), 2342–2349. https://doi.org/10.1007/s11356-014-3625-x.
  • 41. Wu M.L., Ye X.Q., Chen K.L., Li W., Yuan J., Jiang X. 2017. Bacterial community shift and hydrocarbon transformation during bioremediation of shortterm petroleum-contaminated soil. Environmental Pollution, 223, 657–664.
  • 42. Wu T., Xu J., Xie W., Yao Z., Yang H., Sun C., Li X. 2018. Pseudomonas aeruginosa L10: A Hydrocarbon-Degrading, Biosurfactant-Producing, and Plant-Growth-Promoting Endophytic Bacterium Isolated From a Reed (Phragmites australis). Front. Microbiol., 9, 1087. https://doi.org/10.3389/fmicb.2018.01087.
  • 43. Yan P., Lu M., Yang Q. 2012. Oil recovery from refinery oily sludge using a rhamnolipid biosurfactant-producing Pseudomonas. Bioresource Technol 116, 24–28.
  • 44. You Z., Xu H., Zhang S., Kim H., Chiang P. 2018. Comparison of Petroleum Hydrocarbons Degradation by Klebsiella pneumoniae and Pseudomonas aeruginosa. Appl. Sci., 18, 1–19. https://doi.org/10.3390/app8122551.
  • 45. Younes G., Rasoul-Amini S., Fotoohabadi E. 2011. The biotransformation, biodegradation, and bioremediation of organic compounds by microalgae. Journal of Phycology, 47, 969–980.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e68fbd3-d546-40b0-afee-b065dcedbac1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.