PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of contaminants removal by a nanofiltration membrane modified with polymer-ion nanoparticles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Iron nanoparticles coated with ionic choline-chloride liquid were used to improve the hydrophilicity and flow rate through the polyethersulfone (PES) membrane. Choline chloride as a modifier was used to obtain the highest water flux by increasing the hydrophilicity of the PES membrane. Changes in membrane structure and morphology were analyzed using FTIR, contact angle, porosity measurement, BET, TGA, DSC, and SEM images. Membrane clogging was measured in the presence of BSA. To evaluate the removal efficiency, Acid Orange 7 dye was used. Suitable removal conditions were obtained by Design-Expert software using a CCD model at optimum pH 6.7 and temperature of 33.9 °C by the DOE method (removal of 97.6%). Iron/choline chloride nanocomposite increased the PES membrane's hydrophilicity and fluid flow rate. Also, the membrane modified by iron/choline chloride nanocomposite removed the sample contaminant from the fluid environment under optimal conditions.
Rocznik
Strony
75--102
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Department of Chemistry, Ilam Branch, Islamic Azad University, Ilam, Iran
  • Department of Chemistry, Ilam Branch, Islamic Azad University, Ilam, Iran
  • Arta Shimi Alborz, Research and Development Center, Tehran, Iran
  • Department of Chemistry, Ilam Branch, Islamic Azad University, Ilam, Iran
  • Arta Shimi Alborz, Research and Development Center, Tehran, Iran
  • UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa
  • Nanosciences African Network (NANOAFNET) Materials Research Department, iThemba LABS National Research Foundation, P.O. Box 722, Somerset West 7129, Western Cape Province, South Africa
  • UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa
  • Nanosciences African Network (NANOAFNET) Materials Research Department, iThemba LABS National Research Foundation, P.O. Box 722, Somerset West 7129, Western Cape Province, South Africa
  • Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa, P.O. Box 392, Florida, 1710, South Africa
Bibliografia
  • [1] BANSAL P., CHAUDHARY G.R., MEHTA S.K., Comparative study of catalytic activity of ZrO2 nano- particles for sonocatalytic and photocatalytic degradation of cationic and anionic dyes, Chem. Eng. J., 2015, 280, 475–485. DOI: 10.1016/j.cej.2015.06.039.
  • [2] ZHAO C., DENG H., LI Y., LIU Z., Photodegradation of oxytetracycline in aqueous solution by 5A and 13X loaded with TiO2 under UV irradiation, J. Hazard. Mater., 2010, 176, 884–892. DOI: 10.1016/j.jhazmat.2009.11.119.
  • [3] ZAD Z.R., DAVARANI S.S.H., TAHERI A.R., BIDE Y., Highly selective determination of amitriptyline using Nafion-AuNPs@ branched polyethyleneimine-derived carbon hollow spheres in pharmaceutical drugs and biological fluids, Biosens. Bioelectron., 2016, 86, 616–622. DOI: 10.1016/j.bios.2016.07.028.
  • [4] FARMANI M.R., PEYMAN H., ROSHANFEKR H., Blue luminescent graphene quantum dot conjugated cysteamine functionalized-gold nanoparticles (GQD-AuNPs) for sensing hazardous dye Erythrosine B, Spectrochim. Acta, Part A, Mol. Biomol. Spectry, 2020, 229, 117960. DOI: 10.1016/j.saa.2019.117960.
  • [5] RAHIMI F., ROSHANFEKR H., PEYMAN H., Ultra-sensitive electrochemical aptasensor for label-free detection of Aflatoxin B1 in wheat flour sample using factorial design experiments, Food Chem., 2021, 343, 128436. DOI: 10.1016/j.foodchem.2020.128436.
  • [6] GHOLIVAND M.B.B., PEYMAN H., GHOLIVAND K., ROSHANFEKR H., TAHERPOUR A.A.A., YAGHOBI R., Theoretical and instrumental studies of the competitive interaction between aromatic α-amino- bisphosphonates with DNA using binding probes, Appl. Biochem. Biotechnol., 2017, 182, 925–943. DOI: 10.1007/s12010-016-2371-6.
  • [7] GHASEMI J., PEYMAN H., NIAZI A., Spectrophotometric determination of acidity constants of 4‐(2‐pyri- dylazo) resorcinol in various micellar media solutions, J. Chinese Chem. Soc., 2007, 54, 1093–1097. DOI: 10.1002/jccs.200700156.
  • [8] ALIDADYKHOH M., PYMAN H., ROSHANFEKR H., Application of a new polymer AgCl nanoparticles coated polyethylene terephthalate [PET] as adsorbent for removal and electrochemical determination of methylene blue dye, Chem. Meth., 2021, 5, 96–106. DOI: 10.22034/chemm.2021.119677.
  • [9] BARTELS C.R., WILF M., ANDES K., IONG J., Design considerations for wastewater treatment by reverse osmosis, Water Sci. Technol., 2005, 51, 473–482. DOI: 10.2166/wst.2005.0670.
  • [10] WANG X.-L., WANG W.-N., WANG D.-X., Experimental investigation on separation performance of nanofiltration membranes for inorganic electrolyte solutions, Desalin., 2002, 145, 115–122. DOI: 10.1016/S0011-9164(02)00395-8.
  • [11] STRATHMANN H., Membranes and membrane separation processes, [In:] Ullmann’s Encyclopedia of Industrial Chemistry, Wiley‐VCH, 2000. DOI: 10.1002/14356007.a16_187.pub2.
  • [12] SEE TOH Y.H., Green asymmetric molecule manufacture using organic solvent nanofiltration and homogeneous catalyst recycle, Thesis, Department of Chemistry, Imperial College, London SW7 2BY, UK, 2005.
  • [13] STUMM W., Aquatic colloids as chemical reactants: surface structure and reactivity, Colloids Surf. A: Physicochem. Eng. Asp., 1993, 73, 1–18. DOI: 10.1016/0927-7757(93)80003-W.
  • [14] TANG C.Y., FU Q.S., CRIDDLE C.S., LECKIE J.O., Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater, Environ. Sci. Technol., 2007, 41 (6), 2008–2014. DOI: 10.1021 /es062052f.
  • [15] NAYLOR T.V. DE, Polymer Membranes: Materials, Structures, and Separation Performance, iSmithers Rapra Publishing, 1996.
  • [16] RAN F., LI J., LU Y., WANG L., NIE S., SONG H., ZHAO L., SUN S., ZHAO C., A simple method to prepare modified polyethersulfone membrane with improved hydrophilic surface by one-pot. The effect of hydrophobic segment length and molecular weight of copolymers, Mater. Sci. Eng. C., 2014, 37, 68–75. DOI: 10.1016/j.msec.2013.12.037.
  • [17] WEI Y., HAN B., HU X., LIN Y., WANG X., DENG X., Synthesis of Fe3O4 nanoparticles and their magnetic properties, Proc. Eng., 2012, 27, 632–637. DOI: 10.1016/j.proeng.2011.12.498.
  • [18] HUANG Y., WANG Y., PAN Q., WANG Y., DING X., XU K., LI N., WEN Q., Magnetic graphene oxide modified with choline chloride-based deep eutectic solvent for the solid-phase extraction of protein, Anal. Chim. Acta., 2015, 877, 90–99. DOI: 10.1016/j.aca.2015.03.048.
  • [19] KIRK S.A., GOMORY T., COHEN D., Mad Science. Psychiatric coercion, Diagnosis, and Drugs, Routledge, 2017.
  • [20] ABBASI A.R., AKHBARI K., MORSALI A., Dense coating of surface mounted CuBTC metal-organic framework nanostructures on silk fibers, prepared by layer-by-layer method under ultrasound irradiation with antibacterial activity, Ultrason. Sonochem., 2012, 19, 846–852. DOI: 10.1016/j.ultsonch.2011.11.016.
  • [21] VINODHINI P.A., SANGEETHA K., THANDAPANI G., SUDHA P.N., JAYACHANDRAN V., SUKUMARAN A., FTIR, XRD and DSC studies of nanochitosan, cellulose acetate, and polyethylene glycol blend ultrafiltration membranes, Int. J. Biol. Macromol., 2017, 104, 1721–1729. DOI: 10.1016/j.ijbiomac.2017.03.122.
  • [22] DUAN Y.-T., SANGANI C.B., AMETA R.K., Thermal, SEM, AFM, BET and biological analysis of newly synthesized Fe2+/Fe3+-based MOIFs, J. Mol. Liq., 2019, 295, 111709. DOI: 10.1016/j.molliq.2019.111709.
  • [23] KEBRIA M.R.S., JAHANSHAHI M., RAHIMPOUR A., SiO2 modified polyethyleneimine-based nano- filtration membranes for dye removal from aqueous and organic solutions, Desalin., 2015, 367, 255–264. DOI: 10.1016/j.desal.2015.04.017.
  • [24] MAKHETHA T.A., MOUTLOALI R.M., Antifouling properties of Cu (tpa)@ GO/PES composite membranes and selective dye rejection, J. Membr. Sci., 2018, 554, 195–210. DOI: 10.1016/j.memsci. 2018.03.003.
  • [25] LIVAZOVIC S., Ultrafiltration and Nanofiltration Multilayer Membranes Based on Cellulose, PhD dissertation, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia, 2016.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e67df9b-e474-4cf6-b019-dfa9639a76bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.