PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fungal Treatment and Wheat Straw Blend for Enhanced Animal Feed from Olive Pulp

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Amid fodder shortages and environmental concerns in Morocco, this study explores a transformative livestock feed strategy. By combining olive pulp (OP) and wheat straw (WS) treated with Phanerochaete chrysosporium and Fusarium oxysporum, we enhance digestibility and sustainability. Five mixing ratios were examined: 100% OP (OP), 75% OP and 25% WS (MOP), 50% OP and 50% WS (OPWS), 25% OP and 75% WS (MWS), and 100% WS (WS). Fungal treatment and ratios influence cellulose-lignin dynamics. MOP increased cellulose (13.1), OP showed an initial decrease (-8.51, -5.88 for P. chrysosporium, F. oxysporum), with cellulose rising from 4 to 8 weeks, then declining. Lignin degradation differed (P < 0.001), P. chrysosporium was efficient (24.22%±13.75 to 31.57% ± 20.65), MWS remarkable, and OPWS stable. Mixed substrates showed higher IVTD_imp (58.56% ± 16%, 54.18% ± 20%, 36.83% ± 18%), OP and WS lower (26.25% ± 11%, 14.43% ± 7.48%). Enhanced IVTD (4-12 weeks) seen, OPWS and MOP excelling, WS lower. In conclusion, this study unveils the potential of fungal-treated feed optimization through substrate composition and tailored treatment durations. By leveraging synergistic effects and optimizing treatment timelines, we enhance livestock feed sustainability while addressing waste management concerns. This comprehensive approach holds promise for achieving both nutritional and environmental goals in livestock production.
Rocznik
Strony
187--200
Opis fizyczny
Bibliogr. 57 poz., rys., tab.
Twórcy
  • Laboratory of Biotechnology and Bioresources Valorization, Moulay Ismail University of Meknes, BP 11201, Zitoune Meknes City, Morocco
  • Laboratory of Biotechnology and Bioresources Valorization, Moulay Ismail University of Meknes, BP 11201, Zitoune Meknes City, Morocco
  • Laboratory of Biotechnology and Bioresources Valorization, Moulay Ismail University of Meknes, BP 11201, Zitoune Meknes City, Morocco
Bibliografia
  • 1. Agrawal P., Verma D., Daniell H. 2011. Expression of Trichoderma reesei β-Mannanase in Tobacco Chloroplasts and Its Utilization in Lignocellulosic Woody Biomass Hydrolysis. PLoS One, 6, e29302.
  • 2. Akyol Ç., Ince O., Bozan M., Ozbayram E.G., Ince B. 2019. Fungal bioaugmentation of anaerobic digesters fed with lignocellulosic biomass: What to expect from anaerobic fungus Orpinomyces sp. Bioresource Technology 277, 1–10.
  • 3. Albendea P., Tres A., Rafecas M., Vichi S., Solà-Oriol D., Verdú M., Guardiola F. 2023. Effect of feeding olive pomace acid oil on pork lipid composition, oxidative stability, colour, and sensory acceptance. Animal 17, #100879.
  • 4. Astuti T., Akbar S.A., Rofiq M.N., Jamarun N., Huda N., Fudholi A. 2022. Activity of cellulase and ligninase enzymes in a local bioactivator from cattle and buffalo rumen contents. Biocatalysis, Agricultural Biotechnology 45, #102497.
  • 5. Bahta Y.T., Myeki V.A. 2021. Adaptation, coping strategies and resilience of agricultural drought in South Africa: implication for the sustainability of livestock sector. Heliyon 7, e08280.
  • 6. Baker P.W., Višnjevec A.M., Peeters K., Schwarzkopf M., Charlton A. 2023. Valorisation of waste olive pomace: Laboratory and pilot scale processing to extract dietary fibre. Clean Circular Bioeconomy 5, #100045.
  • 7. Benaddou M., Hajjaj H., Diouri M. 2023. Eco-friendly utilisation of agricultural coproducts – enhancing ruminant feed digestibility through synergistic fungal co-inoculation with Fusarium solani, Fusarium oxysporum, and Penicillium chrysogenum. Ecological Engineering & Environmental Technology 24(8):120–32. doi: 10.12912/27197050/171590.
  • 8. Bentil J.A. 2021. Biocatalytic potential of basidiomycetes: Relevance, challenges and research interventions in industrial processes. Scientific African 11, e00717.
  • 9. Bilal M., Zdarta J., Jesionowski T., Iqbal H.M.N. 2023. Manganese peroxidases as a robust biocatalytic tool – An overview of sources, immobilization, and biotechnological applications. International Journal of Biological Macromolecules 234, #123531.
  • 10. Chai Y., Bai M., Chen A., Peng L., Shao J., Luo S., Deng Y., Yan B., Peng C. 2022. Valorization of waste biomass through fungal technology: Advances, challenges, and prospects. Industrial Crops and Products 188, #115608.
  • 11. Chandel A.K., Garlapati V.K., Jeevan Kumar S.P., Hans M., Singh A.K., Kumar S. 2020. The role of renewable chemicals and biofuels in building a bioeconomy. Biofuels, Bioproducts and Biorefining 14, 830–844.
  • 12. Chen M., Li Y., Liu H., Zhang D., Shi Q.S., Zhong X.Q., Guo Y., Xie X.B. 2023. High-value valorization of lignin as an environmentally benign antimicrobial. Materials Today Bio 18, #100520.
  • 13. Chen X., Li Y., Li X., Shi J., Liu L. 2024. Exploring the potential of multiple lignocellulosic biomass as a feedstock for biobutanol production. Fuel 357, #129697.
  • 14. Dhingra D., Michael M., Rajput H., Patil R.T. 2012. Dietary fiber in foods: A review. Journal of Food Science and Technology 49, 255–266.
  • 15. Di Giacomo G., Romano P. 2022. Evolution of the Olive Oil Industry along the Entire Production Chain and Related Waste Management. Energies 2022, Vol. 15. 465 15, 465.
  • 16. Ghose T.K. 1987. Measurement of cellulase activities. Pure and Applied Chemistry 59, 257–268.
  • 17. Gupta K., Chundawat T.S. 2020. Zinc oxide nanoparticles synthesized using Fusarium oxysporum to enhance bioethanol production from ricestraw. Biomass and Bioenergy 143, #105840.
  • 18. Hermosilla E., Rubilar O., Schalchli H., da Silva A.S.A., Ferreira-Leitao V., Diez M.C. 2018. Sequential white-rot and brown-rot fungal pretreatment of wheat straw as a promising alternative for complementary mild treatments. Waste Management 79, 240–250.
  • 19. Hitchen A., Zechanowitsch G. 1980. Chelatometric determination of calcium and magnesium in iron ores, slags, anorthosite, limestone, copper-nickel-lead-zinc ores and divers materials. Talanta 24, 269-275.
  • 20. Hu Y., Priya A., Chen C., Liang C., Wang W., Wang Q., Lin C.S.K., Qi W. 2023. Recent advances in substrate-enzyme interactions facilitating efficient biodegradation of lignocellulosic biomass: A review. International Biodeterioration & Biodegradation 180, #105594.
  • 21. Innangi M., Niro E., D’Ascoli R., Danise T., Proietti P., Nasini L., Regni L., Castaldi S., Fioretto A. 2017. Effects of olive pomace amendment on soil enzyme activities. Applied Soil Ecology 119, 242–249.
  • 22. Intasit R., Khunrae P., Meeinkuirt W., Soontorngun N. 2022. Fungal pretreatments of Napier grass and sugarcane leaves for high recovery of lignocellulosic enzymes and methane production. Industrial Crops and Products 180, #114706.
  • 23. Kumar A., Chandra R. 2020. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon 6, e03170.
  • 24. Kumar V.V., Venkataraman S., Kumar P.S., George J., Rajendran D.S., Shaji A., Lawrence N., Saikia K., Rathankumar A.K. 2022. Laccase production by Pleurotus ostreatus using cassava waste and its application in remediation of phenolic and polycyclic aromatic hydrocarbon-contaminated lignocellulosic biorefinery wastewater. Environmental Pollution 309, #119729.
  • 25. Lammi S., Gastaldi E., Gaubiac F., Angellier-Coussy H. 2019. How olive pomace can be valorized as fillers to tune the biodegradation of PHBV based composites. Polymer Degradation and Stability 166, 325–333.
  • 26. Leite P., Salgado J.M., Venâncio A., Domínguez J.M., Belo I. 2016. Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation. Bioresource Technology 214, 737–746.
  • 27. Li B., Dinkler K., Zhao N., Ran X., Sobhi M., Dong R., Müller J., Xiong W., Huang G., Guo J., Oechsner H. 2022. Response of phosphorus speciation to organic loading rates and temperatures during anaerobic co-digestion of animal manures and wheat straw. Science of the Total Environment 838, #155921.
  • 28. Li H., Duan Y., Xu G., Chang S., Ju M., Wu Y., Qu W., Cao H., Zhang H., Miao H. 2023. Production profile and comparison analysis of main toxin components of Fusarium oxysporum f. sp. sesami isolates with different pathogenicity levels. Oil Crop Science 8, 104–110.
  • 29. Lin S., Chi W., Hu J., Pan Q., Zheng B., Zeng S. 2017. Sensory and nutritional properties of Chinese olive pomace based high fiber biscuit. Emirates Journal of Food and Agriculture 29, 495–501.
  • 30. M’Barek H.N., Taidi B., Smaoui T., Ben Aziz M., Mansouri A., Hajjaj H. 2019. Isolation, screening and identification of ligno-cellulolytic fungi from northern central Morocco. Biotechnology, Agronomy, Society and Environment 23.
  • 31. Méndez-Líter J.A., de Eugenio L.I., Nieto-Domínguez M., Prieto A., Martínez M.J. 2021. Hemicellulases from Penicillium and Talaromyces for lignocellulosic biomass valorization: A review. Bioresource Technology 324, #124623.
  • 32. Mendu L., Ulloa M., Payton P., Monclova-Santana C., Chagoya, J., Mendu, V. 2022. Lignin and cellulose content differences in roots of different cotton cultivars associated with different levels of Fusarium wilt race 4 (FOV4) resistance-response. Journal of Agricultural and Food Research 10, #100420.
  • 33. Najah EL idrissi A., Benbrahim M., Rassai N. 2023. Comparison of Moroccan argan nut shell and olive cake combustion to determine the best combustible for CHP system and for the thermodynamic cycle. Heliyon 9, e14804.
  • 34. Nayan N., van Erven G., Kabel M.A., Sonnenberg, A.S.M., Hendriks, W.H., Cone, J.W. 2019a. Evaluation of fungal degradation of wheat straw cell wall using different analytical methods from ruminant nutrition perspective. Journal of the Science of Food and Agriculture 99, 4054–4062.
  • 35. Nayan N., van Erven G., Kabel M.A., Sonnenberg, A.S.M., Hendriks, W.H., Cone, J.W. 2019b. Improving ruminal digestibility of various wheat straw types by white-rot fungi. Journal of the Science of Food and Agriculture 99, 957–965.
  • 36. Ouzounidou G., Zervakis G., Gaitis F. 2010. Raw and microbiologically detoxified olive mill waste and their impact on plant growth. Journal: Terrestrial and Aquatic Environmental Toxicology 4, 21–38.
  • 37. Paz A., Karnaouri A., Templis C.C., Papayannakos N., Topakas E. 2020. Valorization of exhausted olive pomace for the production of omega-3 fatty acids by Crypthecodinium cohnii. Waste Management 118, 435–444.
  • 38. Pritsch K., Garbaye J. 2011. Enzyme secretion by ECM fungi and exploitation of mineral nutrients from soil organic matter. Annals of Forest Science 68, 25–32.
  • 39. Ribeiro T.B., Oliveira A., Coelho M., Veiga M., Costa E.M., Silva S., Nunes J., Vicente, A.A., Pintado M. 2021. Are olive pomace powders a safe source of bioactives and nutrients? Journal of the Science of Food and Agriculture 101, 1963–1978.
  • 40. Saini S., Sharma K.K. 2022. Ligninolytic Fungi from the Indian Subcontinent and Their Contribution to Enzyme Biotechnology. Progress in Mycological Research: Biology and Biotechnology 139–184.
  • 41. Sharifian Fard M., Pasmans F., Adriaensen C., Laing G. Du, Janssens G.P.J., Martel A. 2014. Chironomidae bloodworms larvae as aquatic amphibian food. Zoo Biology 33, 221–227.
  • 42. Srinivasan C., D’Souza T.M., Boominathan K., Reddy C.A. 1995. Demonstration of Laccase in the White Rot Basidiomycete Phanerochaete chrysosporium BKM-F1767. Applied and Environmental Microbiology 61, 4274–4277.
  • 43. Sun W., Tajvidi M., Hunt C.G., Cole B.J.W., Howell, C., Gardner D.J., Wang J. 2022. Fungal and enzymatic pretreatments in hot-pressed lignocellulosic bio-composites: A critical review. Journal of Cleaner Production 353, #131659.
  • 44. Sun Z., Mao Y., Liu S., Zhang H., Xu Y., Geng R., Lu J., Huang S., Yuan Q., Zhang S., Dong Q. 2022. Effect of pretreatment with Phanerochaete chrysosporium on physicochemical properties and pyrolysis behaviors of corn stover. Bioresource Technology 361, #127687.
  • 45. Tsegaye B., Balomajumder C., Roy P. 2020. Organosolv pretreatments of rice straw followed by microbial hydrolysis for efficient biofuel production. Renewable Energy 148, 923–934.
  • 46. van Kuijk S.J.A., Sonnenberg A.S.M., Baars J.J.P., Hendriks W.H., Cone J.W. 2015a. Fungal treated lignocellulosic biomass as ruminant feed ingredient: A review. Biotechnology Advances.
  • 47. van Kuijk S.J.A., Sonnenberg A.S.M., Baars J.J.P., Hendriks W.H., Cone J.W. 2015b. Fungal treated lignocellulosic biomass as ruminant feed ingredient: A review. Biotechnology Advances.
  • 48. van Kuijk, Sandra J.A., Sonnenberg A.S.M., Baars J.J.P., Hendriks W.H., Cone J.W. 2015. Fungal treatment of lignocellulosic biomass: Importance of fungal species, colonization, and time on chemical composition and in vitro rumen degradability. Animal Feed Science and Technology 209, 40–50.
  • 49. Van Kuijk Sandra J.A., Sonnenberg A.S.M., Baars J.J.P., Hendriks W.H., Cone J.W. 2015. Fungal treatment of lignocellulosic biomass: Importance of fungal species, colonization, and time on chemical composition and in vitro rumen degradability. Animal Feed Science and Technology 209, 40–50.
  • 50. Van Kuijk Sandra J.A., Sonnenberg A.S.M., Baars J.J.P., Hendriks W.H., del Río J.C., Rencoret J., Gutiérrez A., de Ruijter N.C.A., Cone, J.W. 2017. Chemical changes and increased degradability of wheat straw and oak wood chips treated with the white rot fungi Ceriporiopsis subvermispora and Lentinula edodes. Biomass and Bioenergy 105, 381–391.
  • 51. Van Soest P.J., Robertson J.B., Lewis B.A. 1991. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science 74, 3583–3597.
  • 52. Weinberg Z.G., Chen Y., Weinberg P. 2008. Ensiling olive cake with and without molasses for ruminant feeding. Bioresource Technology 99, 1526–1529.
  • 53. Xia Y., Zhang B., Guo Z., Tang S., Su Y., Yu X., Chen S., Chen G. 2022. Fungal mycelium modified hierarchical porous carbon with enhanced performance and its application for removal of organic pollutants. Journal of Environmental Chemical Engineering 10, #108699.
  • 54. Zhang M., Tian R., Tang S., Wu K., Wang B., Liu Y., Zhu Y., Lu H., Liang B. 2023. The structure and properties of lignin isolated from various lignocellulosic biomass by different treatment processes. International Journal of Biological Macromolecules 243, #125219.
  • 55. Zhang S., Jiang M., Zhou Z., Zhao M., Li Y. 2012. Selective removal of lignin in steam-exploded rice straw by Phanerochaete chrysosporium. International Biodeterioration & Biodegradation 75, 89–95.
  • 56. Zheng C., Cone J.W., Baars J.J.P., van Peer A., Hai T.T., Hendriks W.H. 2023. O77 (not presented) Conversion of lignocellulosic biomass into valuable feed for ruminants using white rot fungi. Animal - Science Proceedings 14, 593.
  • 57. Zwane P.E., Ndlovu T., Mkhonta T.T., Masarirambi M.T., Thwala J.M. 2019. Effects of enzymatic treatment of sisal fibers on tensile strength and morphology. Scientific African 6, e00136.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e67b10c-3474-4917-8ff5-191681571db3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.