PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficiency of Aluminum Oxide Inclusions Removal from Liquid Steel as a Result of Collisions and Agglomeration on Ceramic Filters

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Filtration is one of the most efficient methods of removing Al2O3 inclusions from liquid steel. The efficiency of this process depends on the physicochemical parameters of liquid metal, inclusion and properties of the applied filters. The particles attracted during filtration undergo agglomeration, collisions and chemical reactions on the filter surface, with the emphasis on the mechanism of particle collisions and the role of material from which the filter was made. The aluminum oxide inclusions collide with the filter surface and as the growing process continues, the particles also collide with the previously adsorbed inclusions. At the interface of particle and filter the mixing of the metal bath is most intense, being a result of a sudden change of flow direction and breaking up the stream of liquid metal which is in a direct contact with material. The efficiency of filtration is defined not only by the behavior of individual particles but of all population. The simulations revealed that only a small fraction of these particles adheres directly to the filter material; most of them stick to the former ones. Attention should be also paid to the fact that some of the inclusions which contacted the filter walls do not form a permanent connection and are then entrained by metal. Authors solved the problem of agglomeration and collisions of Al2O3 inclusions with the ceramic surface of the filter with the PSG method, mainly used for the analysis of agglomeration of inclusions during steel refining in the ladle.
Rocznik
Strony
43--48
Opis fizyczny
Bibliogr. 33 poz., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
Bibliografia
  • [1] Kalisz, D. & Kuglin, K. (2019). The influence of adsorbed Al2O3 inclusions on the viscosity behavior of mould slag, Archives of Foundry Engineering. 19(2), 67-74. DOI:10.24425/afe.2019.127118.
  • [2] Bulko, B., Molnar, P., Demeter, P., Baricova, D., Pribulova, A. & Mutas P. (2018). Study of the Influence of Intermix Condition on Steel Cleanliness. Metals. DOI:10.3390/met8100852.
  • [3] Żak, P.L., Kalisz, D., Lelito, J., Szucki, M., Gracz, B. & Suchy, J.S. (2015). Modeling of non – metallic particles motion proces in foundry alloys. Metallurgija - Journal for Theory and Practice in Metallurgy. 54(2), 357-360.
  • [4] Janiszewski, K. & Panic, B. (2014). Industrial Investigations of the liquid steel filtration. Metalurgija. 53(3), 339-342.
  • [5] Janiszewski, K. (2013). Refining of liquid steel in a tundish using the method of filtration during its casting in the CC machine. Archives of Metallurgy and Materials. 58(2), 509-517. DOI: 10.2478/amm-2013-0029.
  • [6] Socha, L., Bažan, J., Martinek, L., Fila, P., Balcar, M. & Lev, P. (2010). Laboratory Verification of Resistance of Refractory Materials for Ceramic Filters. METAL. Rožnov p. Radhoštěm, Czech Republic, 90-95.
  • [7] Warzecha, M. & Merder, T. (2013). Numerical analysis of the nonmetallic, inclusions distribution and separation in a two strand tundish. Metalurgija - Journal for Theory and Practice in Metallurgy. 52(2), 153-156.7.
  • [8] Aubrey, L.S. & Brockmeyer, J.W. (1986). Steelmaking Proc. Conf. Washington 6-9.04. 1986, 977-991.
  • [9] Bažan, J., Bužek, Z., Roučka, J., Strańsky, K., Lev, P. (1998). About the mechanism of filtering molded copper and foam filters. Materials of the VIII International Scientific Conference „Iron and Steelmaking”, Mala Lučivna, 23-25.09.1998, 168-171. (in Czech).
  • [10] Bagherian, E.R., Ariffin, M.K. & Sulaiman, S. (2015). Development of a ceramic foam filter for filtering molten aluminium alloy in castin process. IJRET: International Journal of Research in Engineering and Technology. 04, 03, 27-43.
  • [11] Asłanowicz. M., Ościłowski. A., Stachańczyk. J. & Wieliczko, P. (2007). Evaluating the effectiveness of heat – resistant cast steel filtration from the results of structure examinations. Archives of Foundry Engineering. 7(1), 97-102.
  • [12] Bruna, M., Bolibruchova, D. & Kantorik, R. (2008). Filtration of aluminium alloys and its influence on mechanical properties and shape of eutectical silicium. Archives of Foundry Engineering. 8(2), 13-16.
  • [13] Chojecki A., Dobosz St. (2006). Alloy filtration through ceramic filters. Transactions of VSB – Technical University of Ostrava, 1, 87-92. ISSN 1210-0471.
  • [14] Ali, S., Mutharasan, R. & Apelian, D. (1985) Physical refining of steel melts by filtration. Metallurgical Transactions B. 16(4), 725-742.
  • [15] Svjażin, A.G., Romanowicz, D.A. (1996). Hutnik – Wiadomości Hutnicze 1996, nr 5.
  • [16] Weidner, A., Krewerth, D., Witschel, B., Emmel, M., Schmidt, A., Glining, J., Volkova, O., Aneziris, C.G. & Bierman, H. (2016). Microstructure of non-metallic inclusion identified in cast steel 42CrMo4 after metal melt filtration by novel foam filters. Steel Research. 87(8), 1038-1053.
  • [17] Uemura, K., Takahashi, M., Koyma, S. & Nitta, M. (1992). Filtration mechanism of non – metallic inclusions in steel by ceramic loop filter, ISIJ Int. 32, 150-156.
  • [18] Geiger, G.H., Poirier, D.R. (1973). Transport Phenomena in Metallurgy, Addison-Wesley Publishing Company, Inc., 1973, 91-97.
  • [19] Scheidegger, A.E. (1974). The Physics of Flow through Porons Media, 3rd Edition, University of Toronto Press, 1974, 124-155.
  • [20] Bulkowski, L., Galisz, U., Kania, H., Kudliński, Z., Pieprzyca, J. & Barański, J. (2012). Industrial tests of steel filtering process, Archives of Metallurgy and Materials. 57(1), 363-369.
  • [21] Kawecka-Cebula, E., Kalicka, Z. & Wypartowicz, J. (2006). Filtration of nonmetallic inclusion in steel. Archives of Metallurgy and Materials. 51(2), 261-268.
  • [22] Iwanciw, J., Podorska, D. & Wypartowicz, J. (2011). Simulation of oxygen and nitrogen removal from steel by means of titanium and aluminium, Archives of Metallurgy and Materials. 56(3), 635-644. DOI: 10.2478/v10172-011-0069-x.
  • [23] Podorska, D., Drożdż, P., Falkus, J. & Wypartowicz, J. (2006). Calculation of oxide inclusions composition in the steel deoxidized with Mn, Si and Ti. Archives of Metallurgy and Materials. 51(4), 581-586.
  • [24] Kalicka, Z. (1998). The role of dispersion systems in the description of liquid steel refining. Kraków: AGH Wydawnictwo Naukowo – Dydaktyczne.
  • [25] Lis, T. (2009). High purity steel metallurgy. Gliwice: Wydawnictwo Politechniki Śląskiej.
  • [26] Kalisz, D.(2013). Thermodynamic characteristics of the non-metallic phase in liquid steel. Kraków: Wydawnictwo Naukowe Akapit.
  • [27] Tozawa, H., Kato, Y., Sorimachi, K. & Nakanishi T.(1999) Agglomeration and flotation of alumina clusters in molten steel. ISIJ Int. 39(5), 426-434.
  • [28] Kalisz, D. & Żak, P.L. (2016). PSG method for simulating of Al2O3 inclusion in liquid steel, Acta Physica Polonica A. 130(1), 157-159. DOI: 10.12693/APhysPolA.130.157.
  • [29] Kalisz, D. & Żak, P.L. (2016). Analysis of Agglomeration of Al2O3 Particles in Liquid steel, Archives of Metallurgy and Materials. 61(4), 2091-2096. DOI: 10.1515/amm-2016-0336.
  • [30] Kuglin, K. & Kalisz, D.(2017). Effect of energy mix on the phenomenon of agglomeration of non – metallic inclusion particles in liquid steel. Transactions of Foundry Research Institute. 57(1), 11-18. DOI: 10.7356/iod.2017.02.
  • [31] Saffman, P.G. & Turner, J.S. (1956). On the collision of drops in turbulent clouds. Journal of Fluid Mechanics. 1(1), 16-33. DOI: 10.1017/S0022112056000020.
  • [32] Linder, S. (1974). Hydrodynamics and collisions of small particles in a turbulent metallic melt with special reference to deoxidation of stell. Scandinavian Journal of Metallurgy. 3, 137-150.
  • [33] Nakaoka, T., Taniguchi, S., Matsumoto, K., Johansen, S.T. (2001). Particle – size grouping method of inclusion agglomeration and its application to water model experiments. ISIJ Int. 41, 1103-1111. DOI: 10.2355/isijinternational.41.1103.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e61a572-31be-4a98-8404-c64c02d8c395
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.