PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Membranes obtained on the basis of cellulose acetate and their use in removal of phenol from liquid phase

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Physicochemistry of interfaces - instrumental methods (22-26.08.2021 ; Lublin, Poland)
Języki publikacji
EN
Abstrakty
EN
The membranes based on cellulose acetate (CA) were obtained by the method of phase inversion and used for removal of phenol (in concentrations of 15 and 25 mg/L) from liquid phase. To differentiate the hydrophilic properties of the membrane surfaces, different amounts of cellulose acetate (14 and 18 wt. %) and polyvinylpyrrolidone as a pore-generating agent (PVP, 1, 2, 3 or 4 wt. %) were used. The membranes were characterised by determination of their porosity, equilibrium water content, wetting angle and content of surface oxygen functional groups. After the application of membranes to phenol removal, the following parameters characterising the process were determined: permeability, membrane resistance, coke resistances, pore resistances, total filtration resistance and flux recovery ratio. The membranes were found to show higher effectiveness in phenol removal from a solution of the initial concentration 15 mg/L, and more effective were the membranes with higher contents of cellulose acetate. On the surface of the membranes the oxygen functional groups of acidic nature are dominant, both before and after filtration. The membranes of higher contents of cellulose acetate show higher resistances.
Rocznik
Strony
art. no. 144174
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
  • Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8,61-614 Poznań, Poland
  • Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8,61-614 Poznań, Poland
  • Maria Curie-Sklodowska University in Lublin, Faculty of Chemistry, Department of Analytical Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska 3, 20-031 Lublin, Poland
  • Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8,61-614 Poznań, Poland
Bibliografia
  • ARASI, M.A., SALEM, A., SALEM, S., 2021. Production of mesoporous and thermally stable silica powder from low grade kaolin based on eco-friendly template free route via acidification of appropriate zeolite compound for removal of cationic dye from wastewater. Sustain. Chem. Pharm. 19, 100366.
  • BASILE, A., GALLUCCI, F., 2011. Membranes for Membrane Reactors. Preparation, Optimization and Selection. John Wiley & sons.
  • BAZAN-WOZNIAK, A., PIETRZAK, R., 2020. Adsorption of organic and inorganic pollutants on activated bio-carbons prepared by chemical activation of residues of supercritical extraction of raw plants. Chem. Eng. J. 393, 124785.
  • BERA, A., BHALANI, D.V., JEWERAKA, S.K., GHOSH, P.K., 2016. The effect of phenol functionality on the characteristic features and performance of fully aromatic polyester thin film composite nanofiltration membranes. RSC Adv., 2016,6, 99867-99877.
  • DI BELLA, G., DI TRAPANI, D., 2019. A Brief Review on the Resistance-in-Series Model in Membrane Bioreactors (MBRs). Memranes 9(2), 24.
  • DING, Y., WU, J., WANG, J., WANG, J., YE, J., LIU, F., 2020. Superhydrophilic carbonaceous-silver nanofibrous membrane for complex oil/water separation and removal of heavy metal ions, organic dyes and bacteria. J. Membrane Sci. 614, 118491.
  • FANG, J., CHEN, Y., FANG, CH., ZHU, L., 2022. Regenerable adsorptive membranes prepared by mussel-inspired codeposition for aqueous dye removal. Sep. Purif. Technol. 281, 119876.
  • GNANASEKARANA, G., ARTHANAREESWARAN, G., MOKA, S., 2021. A high-flux metal-organic framework membrane (PSF/MIL-100 (Fe)) for the removal of microplastics adsorbing dye contaminants from textile wastewater. Sep. Purif. Technol. 2021, 119655.
  • HERNANDEZ-BARRETO, D., GIRALDO, L., MORENO-PIRAJANA, J.C., 2020. Dataset on adsorption of phenol onto activated carbons: equilibrium, kinetics and mechanism of adsorption. Data in Brief 32, 106312.
  • HOFMAN, M., PIETRZAK, R., 2011. Adsorbents obtained from waste tires for NO2 removal under dry conditions at room temperature. Chem. Eng. J. 170, 202-208.
  • HOOGANTING, M.M., SEWCZYK, A.T., KROLL, S., ARKI, P., BEUTEL, S., REZWAN, K., MAASA, M., 2019. Proteolytic ceramic capillary membranes for the production of peptides under flow. Biochem. Eng. J. 145, 89-99.
  • HOU, D., FAN, H., JIANG, Q., WANG, J., ZHANG, X. 2014. Preparation and characterization of PVDF flat-sheet membranes for direct contact membrane distillation. Sep. Purif. Technol. 135, 211-222.
  • JASIEWICZ, K., PIETRZAK., 2013. The influence of pore generating agent on the efficiency of copper and iron ions removal from liquid phase by polyethersulfone membranes. Chem. Eng. J. 228, 449-454.
  • KAMAL, N., AHZI, S., KOCHKODAN, V., 2020. Polysulfone/halloysite composite membranes with low fouling properties and enhanced compaction resistance. Appl. Clay. Sci. 199, 105873.
  • KRASON, J., PIETRZAK, R., 2018. Removal of iron and copper ions from the liquid phase by modified polymeric membranes. J. Polym. Environ. 26, 3237-3242.
  • LEON, G., MARTINEZ, G., LEON, L., GUZMAN, M.A., 2016. Separation of cobalt from nickel using novel ultrasoundprepared supported liquid membranes containing Cyanex 272 as carrier. Physicochem. Probl. Miner. Process. 52(1) 77-86.
  • LI, N.N., FANE, A.G., WINSTON HO, W.S., MASTUURA, T., 2008. Advanced membrane technology and applications. New Jersey: Wiley & Sons.
  • OCAKOGLU, K., DIZGE, N., COLAK, G., OZAY, Y., BILICI, Z., YALICIN, S.Y., OZDEMIR, S., YATMAZ, H.C., 2021. Polyethersulfone membranes modified with CZTS nanoparticles for protein and dye separation: Improvement of antifouling and self-cleaning performance. Colloids Surf. A Physicochem. Eng. Asp. 616, 126430.
  • PAN, Y., HANG, Y., ZHAO, X., LIU, G., JIN, W., 2019. Optimizing separation performance and interfacial adhesion of PDMS/PVDF composite membranes for butanol recovery from aqueous solution. J. Membrane Sci. 579. 210-218.
  • PAUL, B., SARKAR, A., ROY, S., 2021. Appraising the stress responses in Azolla filiculoides elicited by short-term exposure of phenol. Plant Stress 2, 100032.
  • RUDZANOVA, D., LUPTAKOVA, A., MACINGOVA, E., 2019. The possibilities of using sulphate-reducing bacteria for phenol degradation. Physicochem. Probl. Miner. Process. 55(5), 1148–1155.
  • SARI, R., CNTERNO, P., DA SILVA, D., DE LIMA, A., OLDONI, T.L.C., THOME, G.R., CARPES, T., 2020. Extraction of phenolic compounds from tabernaemontana catharinensis leaves and their effect on oxidative stress markers in diabetic rats. Molecules 25(10), 2391.
  • SZCZEPANIK, B., RĘDZIA, N., FRYDEL, L., SŁOMKIEWICZ, P., KOŁBUS, A., STYSZKO, K., DZIOK, T., SAMOJEDEN, B., 2019. Synthesis and Characterization of Halloysite/Carbon Nanocomposites for Enhanced NSAIDs Adsorption from Water. Materials 12(22), 3754.
  • SOLOMAKOU, N., GOULA, A.M., 2021. Treatment of olive mill wastewater by adsorption of phenolic compounds. Rev. Environ. Sci. Biotechnol. 20, 839-863.
  • THOMAS, R., GULLIEN-BURRIEZA, E., ARAFAT, H.A., 2014. Pore structure control of PVDF membranes using a 2-stage coagulation bath phase inversion process for application in membrane distillation (MD). J. Membr. Sci. 452, 470-480.
  • WU, H., FAN, J., SUN, Y., LIU, R., JIN, J., LI, P., 2021. Removal of ammonia nitrogen and phenol by pulsed discharge plasma combined with modified zeolite catalyst. J. Environ. Manage. 299, 113590.
  • Zhao, H., WU, L., ZHOU, Z., ZHANG, L., CHEN, H., 2013. Improving the antifouling property of polysulfone ultrafiltration membrane by incorporation of isocyanate-treated graphene oxide. Phys. Chem.Chem. Phys. 15, 9084-9092
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e595a06-f7e5-47c7-a29a-e717ab9583e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.