PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Errors of addition of sound levels of correlated acoustic disturbances

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article focuses on formulas for calculating the addition of sound levels when the disturbances of the acoustic pressures that determine them are correlated. Based on the numerical experiments, determine the level of possible errors for different coherence conditions of two noise sources. The performed analyses are associated with the classical calculus of algebra of decibel numbers, as well as its modifications securing the required correctness of its axiomatic. Presents the desirability of its use in the problems of developing measurement data of small values of sound levels. Relates the need for their potential applications to computational issues relating to the study of the sound field in special rooms (e.g., radio and television studios, anechoic chambers, lave caves) and the study of the environment in which these devices or objects are located. Draws attention to their importance in estimating type B uncertainty in controlling the state of acoustic hazards in the environment.
Rocznik
Strony
art. no. 2024311
Opis fizyczny
Bibliogr. 26 poz., wykr.
Twórcy
  • Academy of Applied Sciences in Krosno Rynek 1, Krosno, Poland
  • Kielce University of Technology Al. 1000 P.P. 7, Kielce, Poland
  • Kielce University of Technology Al. 1000 P.P. 7, Kielce, Poland
Bibliografia
  • 1. R.D. Portugal, B.F. Svaiter; Weber-Fechner Law and the Optimality of the Logarithmic Scale; Minds and Machines, 2011, 21, 73-81; DOI: 10.1007/s11023-010-9221-z
  • 2. A.D. Pierce; Acoustics An Introduction to Its Physical Principles and Applications; Springer Cham, 2019; DOI: 10.1007/978-3-030-11214-1
  • 3. S.Z.M. Naziri, R.C. Ismail, M.N.M. Isa, R. Hussin; Less memory and high accuracy logarithmic number system architecture for arithmetic operations; Indonesian Journal of Electrical Engineering and Computer Science, 2021, 23(3), 1708-1717
  • 4. R.C. Ismail, N. Norzahiyah, A.B. Jambek; Improved Addition and Subtraction in Logarithmic Number System: Technique and Analysis. Adv. Environ. Biol., 203, 7(12), 3607-3610
  • 5. W. Batko; Modifications of Computational Formulae of Decibel Algebra Applied in Acoustics; Acta Physica Polonica 2011, 119, 909-912
  • 6. D. Montes González, J. M. Barrigón Morillas, G. Rey Gozalo, P. Atanasio Moraga; Microphone position and noise exposure assessment of building façades; Applied Acoustics, 2020, 160, 107157; DOI: 10.1016/j.apacoust.2019.107157
  • 7. R. Peters; Uncertainty in Acoustics, Measurement, Prediction and Assessment; CRC Press, 2020; DOI: 10.1201/9780429470622
  • 8. A.Z. Khachatrian, Z.R. Panosyan, Z.B. Khachatryan; About the path sum in the interference pattern of a wave field generated by two coherent point sources; Optik, 2021, 245, 167682
  • 9. V.E. Ostashev, M.J. Kamrath, D.K. Wilson, M.J. White, C.R. Hart, A. Finn; Vertical and slanted sound propagation in the near-ground atmosphere: Coherence and distributions; J. Acoust. Soc. Am., 2021, 150(4), 3109; DOI: 10.1121/10.0006737
  • 10. S. Islam, A. Burr, D. Grace; Coherent and non-coherent combining in distributed millimetre wave beamforming (Invited Paper); Computer Science, 2019
  • 11. K.L. Gee, T.B. Neilsen, M.M. James; Including source correlation and atmospheric turbulence in a ground reflection model for rocket noise; Proceedings of 168th Meetings on Acoustics, Indianapolis, Indiana Session 2aNS: Noise, 27-31 Oct. 2014; 22(1), 040001
  • 12. H. Liu, Y. Zhang, Z. Xu, X. Liu; Automatic pavement macrotexture depth calculation using a statistical approach based on the tire/road noise signal by directional microphones; Bulletin of The Polish Academy of Sciences, Technical Sciences, 2022, 70(3), e140519; DOI: 10.24425/bpasts.2022.140519
  • 13. G. Moschioni, B. Saggin, M. Tarabini; Sound Source Identification Using Coherence and Intensity Based Methods; IEEE Transactions on Instrumentation and Measurement, 2007, 56, 2478-2485
  • 14. J. Kragh, H. Jonasson, B. Plovsing, A. Sarinen, S. Å. Storeheier, G. Taraldsen; User’s Guide Nord2000 Road; Doc. ref.: AV 1171/06, SINTEF, Hørsholm, 2006
  • 15. P. Xiao, K.D. Yang; Temporal Coherence of Acoustic Signal Transmissions in a Fluctuating Deep Ocean; Journal of Computational Acoustics, 2016, 24, 1650010
  • 16. D.F. Comesana; Scan-Based Sound Visualization Methods Using Sound Pressure and Particle Velocity; PhD Thesis; University of Southampton, 2014
  • 17. J. Mao, J. Du, K. Liu, J. Liu, Y. Cui; Sound field separation of multiple coherent sound sources with single measurement surface; Journal of Vibration and Control, 2022, 28(19-20), 2777-2785; DOI: 10.1177/10775463211020188
  • 18. F. Jacobsen, T. Poulsen, J. Holger Rindel, A. C. Gade, M. Ohlrich; Fundamentals of acoustics and noise control; Technical University of Denmark, 2011
  • 19. R. Makarewicz; Sounds and waves (in Polish); UAM Scientific Publishing, Poznań 2004
  • 20. W. Batko, A. Bąkowski, L. Radziszewski; Limitations Of Decibel Algebra In The Study Of Environmental Acoustic Hazards; Proceedings of the 11th International Conference on Applied Mechanics, 18 November 2022, Bydgoszcz, Poland, 2023, 2949(1), 020001; DOI: 10.1063/5.0166002
  • 21. Q.Hu, S.K. Tang; Active cancellation of sound generated by finite length coherent line sources using piston-like secondary source arrays; The Journal of the Acoustical Society of America, 2019, 145, 3647
  • 22. S. Ryu, J. Lim, Y.S. Lee, E. Yoo, C. Lim; Enhancing Engine Order Sound Using Additive Feedforward Control for a Secondary Path with Uncertainty at Higher Frequencies; Appl. Sci., 2022, 12, 4486
  • 23. L. Liu, Y. Li, S. M. Kuo; Feed-Forward Active Noise Control System Using Microphone Array; IEEE/CAA Journal of Automatica Sinica, 2018, 5(5), 946-952
  • 24. X. Shen, D. Shi, W.S. Gan, S. Peksi; Implementation of coherence-based-selection multi-channel wireless Active Noise Control in headphone; Proceedings of INTER-NOISE and NOISE-CON Congress and Conference, InterNoise21, 1 August 2021, Washington, D.C., USA, 1945-1953; DOI: 10.3397/IN-2021-2004
  • 25. S. Shrivastava, K.H. Kang, M.F. Schneider; Collision and annihilation of nonlinear sound waves and action potentials in interfaces; Journal of The Royal Society Interface, 2018, 15(143), 20170803; DOI: 1098/rsif.2017.0803
  • 26. P. Małecki, T. Lipecki, D. Czopek, J. Piechowicz, J. Wiciak; Acoustics of Icelandic lava caves; Applied Acoustics, 2022, 197, 108929
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e49210e-0248-49e1-899f-ad12f34ab8c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.