Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper provides an architectural analysis of the switchable PV-EC glazing technology based on combining photovoltaic (PV) technology with electrochromic (EC) glazing. The integration of these technologies is considered to constitute future-oriented façade solutions in shaping buildings that are energy-saving and environmentally friendly. The paper aims to define theoretical models of windows using PV-EC technology as solutions adequate from the architectural point of view. To achieve this goal, a comparative analysis of three PV-EC technologies was conducted, i.e., side-by-side (SBS) technology and tandem technologies, namely tandem solid technology (TST) and tandem liquid technology (TLT). The analysis covered functional aspects related to such issues as thermal and visual comfort, energy and aesthetics. The analysis led to extracting the features of the three compared technologies; consequently, their strengths and weaknesses were determined. As a result, seven window models were developed which, based on the above analysis and the insights derived from it, were recognized as the solutions in which the potential of PV and EC technology is best used. The dominant advantages of SBS, being the most developed technology and one with the greatest flexibility in construction applications, are indicated. The research is of a contributory nature, as it constitutes the basis for further numerical and simulation research. Such studies may prove useful to architects in making design decisions, especially at the initial design stages. However, at the current stage of technological development, the study mainly serves as an introduction to further research on improving the PV-EC properties towards integration with the building and its architecture.
Czasopismo
Rocznik
Tom
Strony
95--107
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
- PhD Arch.; University of Ecology and Management in Warsaw, Faculty of Architecture, Olszewska Street 12, 00-792 Warsaw
Bibliografia
- [1] Carlucci F. (2021). A Review of Smart and Responsive Building Technologies and their Classifications. Future Cities and Environment, 7(1), p.10. doi: 10.5334/fce.123.
- [2] Marchwiński J. (2021). Evaluation of PV Powered Switchable Glazing Technologies in terms of their Suitability for Office Windows in Moderate Climates, Journal of Green Building 6(4), 81-110. doi: 10.3992/jgb.16.4.81.
- [3] Kim J-H., Hong J., Han S.-H. (2021). Optimized Physical Properties of Electrochromic Smart Windows to Reduce Cooling and Heating Loads of Office Buildings. Sustainability 13(4), 1815. doi: 10. J.3390/su13041815.
- [4] Marchwiński J. (2021). Study of electrochromic (EC) and gasochromic (GC) glazing for buildings in aspect of energy efficiency. Architecture Civil Engineering Environment 14(3), 27-38. doi: 10.21307/ACEE-2021020.
- [5] Ghosh, A., & Norton, B. (2018). Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings. Renewable Energy 126, 1003-1031. doi: org/10.1016/j.renene.2018.04.038.
- [6] Deb, S.K. , Se-Hee L., Tracy, C.E., Pitts, J.R., Gregg, B.A., & Branz, H.M. (2001). Stand-alone photovoltaic-powered electrochromic smart window. Electrochimica Acta 46, 2125-2130. doi: 10.1016/S0013-4686(01)00390-5.
- [7] Lee-May, H., Chen-Pang, K., Chih-Wei, H., Cheng-Yu, P., & Han-Chang L. (2012). Tunable photovoltaic electrochromic device and module. Solar Energy Materials & Solar Cells 107, 390-395. doi: 10.1016/j.solmat.2012.07.021
- [8] Leftheriotis, G., Syrrokostas, G., & Yianoulis, P. (2013). Photocoloration efficiency and stability of photoelectrochromic devices. Solid State Ionics 231, 30-36. doi: 10.1016/j.ssi.2012.10.024
- [9] Lee-May, H., Chih-Wei, H., Han-Chang, L., Chih-Yu, H., Chun-Heng, Ch.,& Kuo-Chuan, H. (2012). Photovoltaic electrochromic device for solar cell module and self-powered smart glass applications. Solar Energy Materials & Solar Cells 99, 154-159. doi: 10.1016/j.solmat.2011.03.036
- [10] Sibilio S., Rosato A., Scorpio M., Iuliano G., Ciampi G., Vanoli G.P.& de Rossi F. (2016). A Review of Electrochromic Windows for Residential Applications. International Journal Of Heat And Technology, 34(2), 481-488. doi:10.18280/ijht.34S241.
- [11] Georg A. (2008). Switchable windows with tungsten oxide. Vacuum 82(7), 730-735. doi: 10.1016/j.vacuum.2007.10.020.
- [12] Baetens R., Jelle B.P. & Gustavsen A. (2010). Properties, Requirements and Possibilities of SmartWindows for Dynamic Daylight and Solar EnergyControl in Buildings: State-of-the-Art. Solar Energy Materials and Solar Cells, 94(2), 87-105. doi:10.1016/j.solmat.2009.08.021.
- [13] Cannavale, A., Eperon, G.E., Cossari, P., Abate, A., Snaith, H.J., & Gigli, G. (2015). Perovskite photovoltachromic cells for building integration. Energy & Environmental Science 8, 1578-1584. doi: 10.1039/C5EE00896D. doi: 10.1016/j.egypro.2013.05.033.
- [14] Blakers, A., Zin, N., McIntosh, K. R., & Fong K. (2013). High Efficiency Silicon Solar Cells. Energy Procedia, 33, 1-10. doi: 10.1016/j.egypro.2013.05.033.
- [15] Kibria, M. T., Ahammed, A., Sony, S. M., Hossain, F., & Shams-Ul-Islam. (2015). A Review: Comparative studies on different generation solar cells technology. In 5th International Conference on Environmental Aspects of Bangladesh, 51-53.
- [16] Sun, Y., Shanks, K., Baig, H., Zhang, W., Hao, X., Li, Y., He, B., Wilson, R., Liu, H., Sundaram, S., et al. (2018). Integrated semi-transparent cadmium telluride photovoltaic glazing into windows: Energy and daylight performance for different architecture design. Applied Energy, 231, 972-84. doi: 10.1016/j.apenergy.2018.09.133.
- [17] Prasad, S. V. D., Krishnanaik, V., & Babu, K. R. (2013). Analysis of Organic Photovoltaic Cell. International Journal of Science and Modern Engineering, 1(9), 20-23.
- [18] Ritter, A. (2007). Smart materials in architecture, interior architecture and design. Birkhauser.
- [19] Hu, Y., Chu, Y., Wang, Q., et al. (2019). Standardizing Perovskite Solar Modules beyond Cells. Joule, 3(9), 2076-2085. doi:10.1016/j.joule.2019.08.015.
- [20] Sarniak, M.T. (2008). Podstawy fotowoltaiki (Fundamentals of photovoltaics). Warszawa: OWPW.
- [21] Jasim, K.E. (2011). Dye Sentized Solar Cells - Working Principles. Challenges and Opportunities, Solar Cells -Dye Sensitized Devices, Prof. Leonid Kosyachenko [Ed.] Intech.
- [22] Brzezicki M. (2021). A Systematic Review of the most Recent Concepts in Smart Windows Technologies with a Focus on Electrochromics. Sustainability, 13(17), 9604. doi: 10.3390/su13179604
- [23] Nogueira, V.C., Longo,C., Nogueira, A.F., Oviedo, M.A.S., & De Paol M.A. (2006). Solid-state dye-sensitized solar cell: improved performance and stability using a plasticized polymer electrolyte. J. Photochem. Photobiol. A: Chem. 181, 226-232. doi:10.1016/j.jphotochem.2005.11.028.
- [24] Hu, C.W., Lee, K.M., Chen, K.C., Chang, L.C.,Shen, K.Y., Lai, S.C., Kuo, T.H., Hsu, C.Y., Huang, K.M., Vittal, R.,90 & Ho, K.C. (2012). High contrast all-solid-state electrochromic device with 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), heptyl viologen, and succinonitrile. Solar Energy Materials and Solar Cells 99, 135-140. doi:10.1016/j.solmat.2011.05.021.
- [25] Grobe L.O., Terwilliger M., Wittkopf S. (2020). Designing the colour, pattern, and specularity of building integrated photovoltaics. Conference: Technology and Innovation 2020: Smart buildings, smart cities., Izmir, Turkey. doi: 10.5281/zenodo.4049445.
- [26] Muszyńska-Łanowy M. (2011). Fotowoltaika w kolorze (Color photovoltaics). Świat Szkła 4. https://www.swiat-szkla.pl/kontakt/4469-fotowoltaika-w-kolorze.html [2022-01-15]
- [27] Li Z., Ma T., Yang X , Lu L., Wang R., Transparent and Colored Solar Photovoltaics for Building Integration. Solar RRL 5(3). doi: 10.1002/solr.202000614.
- [28] Marchwiński J. (2014). Architectural Evaluation of Switchable Glazing Technologies as Sun Protection Measure. Energy Procedia 57, 1677-1686. doi:10.1016/j.egypro.2014.10.158
- [29] Deb, S.K. (2000). Photovoltaic-Integrated Electrochromic Device for Smart-Window Applications. World Renewable Energy Congress VI Brighton, U.K. July 1-7, 2000. doi: 10.1016/B978-008043865-8/50583-3
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e4840bb-5299-4ae9-9ffe-3b77922ae70d