PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kernel-based Fisher discriminant analysis on the Riemannian manifold for nuclear atypia scoring of breast cancer

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Breast carcinoma is the most prevalent type of malignancy among women worldwide. Breast cancer grading often termed as Nuclear Atypia Scoring (NAS) forms a significant factor in determining individualized treatment plans and in the prognosis of the disease. For addressing the problem of breast cancer grading, we attempt to model the variations in features between histopathological images of different cancer grades and thereby explore the discriminative information concealed in these variations. In this regard, we aggregate multiple correlated features from the images using the geodesic geometric mean of the region covariances, to obtain the gmRC descriptors. As these gmRC descriptors are symmetric positive definite (SPD) matrices lying on the non-Euclidean Riemannian manifold, the discriminant analysis techniques developed for the Euclidean framework may not be appropriate. Hence, we propose a kernel-based Fisher discriminant analysis on the Riemannian manifold (KFDAR), that exploits the kernel trick for embedding the non-linear Riemannian manifold M into a higher dimensional linear Hilbert space H, which are then reduced to a low-dimensional and more discriminative subspace, where the samples become linearly separable. The kernel approach formulated for the Hilbert space embedding and for the kernel discriminant analysis is based on three Riemannian distance metrics: the log-Euclidean metric and the two symmetrized Bregman divergences – Stein and Jeffrey divergences. The experimental results show that this mapping to a highly discriminative space has succeeded in well-separating the histopathological images belonging to different cancer grades and hence it qualitatively and quantitatively outperforms the existing algorithms for cancer grading.
Twórcy
autor
  • Department of Computer Science, Cochin University of Science and Technology, Kerala, India
  • Department of Computer Science, Cochin University of Science and Technology, Kerala, India
autor
  • Department of Computer Science, Cochin University of Science and Technology, Kerala, India
Bibliografia
  • [1] Anon, World cancer research fund international, breast cancer statistics. https://www.wcrf.org/dietandcancer/cancer-trends/ breast-cancer-statistics.
  • [2] Anon, Breast cancer research foundation, breast cancer statistics. https://www.bcrf.org/breast-cancer-statistics.
  • [3] Arul P, Masilamani S. Comparative evaluation of various cytomorphological grading systems in breast carcinoma. Indian J Med Paediatr Oncol 2016;37(2):79. http://dx.doi.org/10.4103/0971-5851.180141.
  • [4] Ghaznavi F, Evans A, Madabhushi A, Feldman M. Digital imaging in pathology: whole-slide imaging and beyond. Annu Rev Pathol: Mech Disease 2013;8(1):331–59. http://dx.doi.org/10.1146/annurev-pathol-011811-120902.
  • [5] Wolberg WH, Street WN, Heisey DM, Mangasarian OL. Computer-derived nuclear ‘‘grade’’ and breast cancer prognosis. Analyt Quantit Cytol Histol 1995;17(4):257–64.
  • [6] Weyn B, Van De Wouwer G, Van Daele A, Scheunders P, Van Dyck D, Van Marck E, et al. Automated breast tumor diagnosis and grading based on wavelet chromatin texture description. Cytometry 1998;33(1):32–40. doi:10.1002/(SICI) 1097-0320(19980901)33:1< 32 AID-CYTO4> 3. 0. CO;2-D.
  • [7] Petushi S, Katsinis C, Coward C, Garcia F, Tozeren A. Automated identification of microstructures on histology slides. in: Biomedical Imaging: Nano to Macro, 2004; 2004. pp. 424–7.
  • [8] Petushi S, Garcia FU, Haber MM, Katsinis C, Tozeren A. Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer. BMC Med Imaging 2006;6(1):14. http://dx.doi.org/10.1186/1471.2342.6.14.
  • [9] Naik S, Doyle S, Agner S, Madabhushi A, Feldman M, Tomaszewski J. Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology. in: 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. 2008. pp. 284–7.
  • [10] Moncayo R, Romo-Bucheli D, Romero E. A grading strategy for nuclear pleomorphism in histopathological breast cancer images using a bag of features (bof). in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 9423; 2015. pp. 75–82.
  • [11] Dalle J-r, Racoceanu D, Putti TC. Nuclear Pleomorphism Scoring by Selective Cell Nuclei Detection. IEEE Workshop on Applications of Computer Vision. 2009. pp. 7–8.
  • [12] Huang CH, Veillard A, Roux L, Loménie N, Racoceanu D. Time-efficient sparse analysis of histopathological whole slide images. Comput Med Imaging Graphics 2011;35(7- 8):579–91. http://dx.doi.org/10.1016/j.compmedimag.2010.11.009.
  • [13] Cosatto E, Miller M, Graf HP, Meyer JS. Grading nuclear pleomorphism on histological micrographs. Pattern Recognition, 2008. ICPR 2008; 2008. pp. 1–4. http://dx.doi.org/10.1109/ICPR.2008.4761112.
  • [14] Basavanhally A, Ganesan S, Feldman M, Shih N, Mies C, Tomaszewski J, et al. Multi-field-of-view framework for distinguishing tumor grade in erþ breast cancer from entire histopathology slides. IEEE Trans Biomed Eng 2013;60 (8):2089–99. http://dx.doi.org/10.1109/TBME.2013.2245129.
  • [15] Wan T, Cao J, Chen J, Qin Z. Automated grading of breast cancer histopathology using cascaded ensemble with combination of multi-level image features. Neurocomputing 2017;229:34–44. http://dx.doi.org/10.1016/j.neucom.2016.05.084.
  • [16] Faridi P, Danyali H, Helfroush MS, Jahromi MA, Cancerous nuclei detection and scoring in breast cancer histopathological images, arXiv preprint arXiv:1612.01237.
  • [17] Veta M, Kornegoor R, Huisman A, Verschuur-Maes AHJ, Viergever MA, Pluim JPW, et al. Prognostic value of automatically extracted nuclear morphometric features in whole slide images of male breast cancer. Modern Pathol 2012;25(12):1559–65. http://dx.doi.org/10.1038/modpathol.2012.126.
  • [18] Maqlin P, Thamburaj R, Mammen JJ, Manipadam MT. Automated nuclear pleomorphism scoring in breast cancer histopathology images using deep neural networks. in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 9468; 2015. pp. 269–76.
  • [19] Lu C, Ji M, Ma Z, Mandal M. Automated image analysis of nuclear atypia in high-power field histopathological image. J Microsc 2015;258(3):233–40. http://dx.doi.org/10.1111/jmi.12237.
  • [20] Dalle J-R, Leow WK, Racoceanu D, Tutac AE, Putti TC. Automatic breast cancer grading of histopathological images. in: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2008. pp. 3052–5.
  • [21] Khan AM, Sirinukunwattana K, Rajpoot N. Geodesic geometric mean of regional covariance descriptors as an image-level descriptor for nuclear atypia grading in breast histology images. in: International Workshop on Machine Learning in Medical Imaging. Springer; 2014. p. 101–8.
  • [22] Khan AM, Sirinukunwattana K, Rajpoot N. A Global Covariance Descriptor for Nuclear Atypia Scoring in Breast Histopathology Images. IEEE J Biomed Health Inform 2015;19(5):1637–47. http://dx.doi.org/10.1109/JBHI.2015.2447008.
  • [23] Ojansivu V, Linder N, Rahtu E, Pietikä inen M, Lundin M, Joensuu H, et al. Automated classification of breast cancer morphology in histopathological images. Diagnos Pathol 2013;8(1):S29.
  • [24] Rezaeilouyeh H, Mollahosseini A, Mahoor H, Mohammad. Microscopic medical image classification framework via deep learning and shearlet transform. J Med Imaging 2016;3 (4):044501. http://dx.doi.org/10.1117/1.JMI.3.4.044501.
  • [25] Doyle S, Agner S, Madabhushi A, Feldman M, Tomaszewski J. Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features. in: 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. 2008. pp. 496–9.
  • [26] Salahuddin T, Haouari F, Islam F, Ali R, Al-Rasbi S, Aboueata N, et al. Breast cancer image classification using pattern-based Hyper Conceptual Sampling method. Informatics in Medicine Unlocked 2018;1–10. http://dx.doi.org/10.1016/j.imu.2018.07.002.
  • [27] Das A, Nair MS, Peter SD. Sparse representation over learned dictionaries on the riemannian manifold for automated grading of nuclear pleomorphism in breast cancer. IEEE Trans Image Process 2019;28(3):1248–60.
  • [28] Dimitropoulos K, Barmpoutis P, Zioga C, Kamas A, Patsiaoura K, Grammalidis N. Grading of invasive breast carcinoma through Grassmannian VLAD encoding. PLoS ONE 2017;12(9). http://dx.doi.org/10.1371/journal.pone.0185110.
  • [29] Gandomkar Z, Brennan PC, Mello-Thoms C. MuDeRN: Multi-category classification of breast histopathological image using deep residual networks. Artif Intel Med 2018;88:14–24. http://dx.doi.org/10.1016/j.artmed.2018.04.005.
  • [30] Han Z, Wei B, Zheng Y, Yin Y, Li K, Li S. Breast Cancer Multi- classification from Histopathological Images with Structured Deep Learning Model. Scientific Reports 2017;7(1). http://dx.doi.org/10.1038/s41598-017-04075-z.
  • [31] Rakhlin A, Shvets A, Iglovikov V, Kalinin AA. Deep Convolutional Neural Networks for Breast Cancer Histology Image Analysis. in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2018. pp. 737–44.
  • [32] Bardou D, Zhang K, Ahmad SM. Classification of breast cancer based on histology images using convolutional neural networks. IEEE Access 2018;6:24680–93.
  • [33] Nejad EM, Affendey LS, Latip RB, Bin Ishak I. Classification of Histopathology Images of Breast into Benign and Malignant using a Single-layer Convolutional Neural Network. in: Proceedings of the International Conference on Imaging; 2017. p. 50–3.
  • [34] Araújo T, Aresta G, Castro E, Rouco J, Aguiar P, Eloy C, et al., Classification of breast cancer histology images using convolutional neural networks, PLoS ONE 12 (6).
  • [35] Rao S, Mitos-rcnn: A novel approach to mitotic figure detection in breast cancer histopathology images using region based convolutional neural networks, arXiv preprint arXiv:1807.01788.
  • [36] Wollmann T, Rohr K, Automatic breast cancer grading in lymph nodes using a deep neural network, arXiv preprint arXiv:1707.07565.
  • [37] Spanhol FA, Oliveira LS, Petitjean C, Heutte L. Breast Cancer Histopathological Image Classification using Convolutional Neural Networks. International Joint Conference on Neural Networks (IJCNN 2016); 2016. pp. 2560–7.
  • [38] Couture HD, Williams LA, Geradts J, Nyante SJ, Butler EN, Marron JS, et al. Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype. npj Breast Cancer 2018;4(1). http://dx.doi.org/10.1038/s41523-018-0079-1.
  • [39] Chen H, Dou Q, Wang X, Qin J, Heng P-a. Mitosis detection in breast cancer histology images via deep cascaded networks. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence; 2016. p. 1160–6.
  • [40] Xu J, Zhou C, Lang B, Liu Q. Deep learning for histopathological image analysis: Towards computerized diagnosis on cancers. in: Advances in Computer Vision and Pattern Recognition; 2017. pp. 73–95.
  • [41] Bayramoglu N, Kannala J, Heikkila J. Deep learning for magnification independent breast cancer histopathology image classification. in: Proceedings International Conference on Pattern Recognition; 2017. p. 2440–5.
  • [42] Nahid A-A, Mehrabi MA, Kong Y. Histopathological breast cancer image classification by deep neural network techniques guided by local clustering. BioMed Research International; 2018.
  • [43] F. A. Spanhol, P. R. Cavalin, L. S. Oliveira, C. Petitjean, L. Heutte, Deep features for breast cancer histopathological image classification.
  • [44] Hamidinekoo A, Denton E, Rampun A, Honnor K, Zwiggelaar R. Deep learning in mammography and breast histology, an overview and future trends. Med Image Anal 2018;47:45–67. http://dx.doi.org/10.1016/j.media.2018.03.006.
  • [45] Wei B, Han Z, He X, Yin Y. Deep learning model based breast cancer histopathological image classification. in: 2017 IEEE 2nd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA); 2017. pp. 348–53.
  • [46] M. Z. Alom, C. Yakopcic, T. M. Taha, V. K. Asari,;1; Breast cancer classification from histopathological images with inception recurrent residual convolutional neural network, arXiv preprint arXiv:1811.04241.
  • [47] Vesal S, Ravikumar N, Davari AA, Ellmann S, Maier A. Classification of Breast Cancer Histology Images Using Transfer Learning. in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 10882 LNCS. 2018. pp. 812–9.
  • [48] Vang YS, Chen Z, Xie X. Deep learning framework for multi-class breast cancer histology image classification. in: International Conference Image Analysis and Recognition. Springer; 2018. p. 914–22.
  • [49] Baudat G, Anouar F. Generalized discriminant analysis using a kernel approach. Neural Computation 2000;12 (10):2385–404. http://dx.doi.org/10.1162/089976600300014980.
  • [50] Mika S, Ratsch G, Weston J, Scholkopf B, Mullers K-R. Fisher discriminant analysis with kernels. in: Neural networks for signal processing IX, 1999; 1999. pp. 41–8.
  • [51] Bishop CM. Pattern Recognition and Machine Learning, Vol. 16; 2006. http://dx.doi.org/10.1017/CBO9781107415324.004, arXiv: arXiv:1011.1669v3.
  • [52] Billings SA, Lee KL. Nonlinear Fisher discriminant analysis using a minimum squared error cost function and the orthogonal least squares algorithm. Neural Netw 2002;15 (2):263–70. http://dx.doi.org/10.1016/S0893-6080(01)00142-3.
  • [53] Liu J, Zhao F, Liu Y. Learning kernel parameters for kernel Fisher discriminant analysis. Pattern Recognit Lett 2013;34 (9):1026–31. http://dx.doi.org/10.1016/j.patrec.2013.03.005.
  • [54] Wang J, Li Q, You J, Zhao Q. Fast kernel Fisher discriminant analysis via approximating the kernel principal component analysis. Neurocomputing 2011;74(17):3313–22. http://dx.doi.org/10.1016/j.neucom.2011.05.014.
  • [55] Fung G, Dundar M, Bi J, Rao B. A fast iterative algorithm for fisher discriminant using heterogeneous kernels. in: Twenty-first international conference on Machine learning - ICML '04; 2004. p. 40.
  • [56] Khemchandani R, Jayadeva S, Chandra. Learning the optimal kernel for Fisher discriminant analysis via second order cone programming. Eur J Oper Res 2010;203(3):692–7. http://dx.doi.org/10.1016/j.ejor.2009.09.020.
  • [57] Li J, Cui P. Improved kernel fisher discriminant analysis for fault diagnosis. Expert Systems with Applications 2009;36(2 PART 1):1423–32. http://dx.doi.org/10.1016/j.eswa.2007.11.043.
  • [58] Wang G, Ding G. Face recognition using kfda-lle. in: International Conference on Intelligent Computing. Springer; 2011. p. 420–5.
  • [59] Wang W, Wang R, Huang Z, Shan S, Chen X. Discriminant Analysis on Riemannian Manifold of Gaussian Distributions for Face Recognition with Image Sets. IEEE Transactions on Image Processing 2018;27(1):151–63. http://dx.doi.org/10.1109/TIP.2017.2746993. ArXiv:1503.0383.
  • [60] Jianhua X, Xuegong Z, Yanda L. Application of kernel fisher discriminanting technique to prediction of hydrocarbon reservoir. Oil Geophysical Prospecting 2002;37(2):170–4.
  • [61] Zhang Q, Li J, Zhang Z. Efficient semantic kernel-based text classification using matching pursuit KFDA. in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 7063 LNCS; 2011. pp. 382–90.
  • [62] Luo D, Liu A. Kernel Fisher Discriminant Analysis Based on a Regularized Method for Multiclassification and Application in Lithological Identification. Mathematical Problems in Engineering 2015. http://dx.doi.org/10.1155/2015/384183.
  • [63] Tuzel O, Porikli F, Meer P. Region covariance: A fast descriptor for detection and classification. in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2006. pp. 589–600.
  • [64] Tuzel O, Porikli F, Meer P. Pedestrian detection via classification on Riemannian manifolds. IEEE Trans Pattern Anal Mach Intel 2008;30(10):1713–27. http://dx.doi.org/10.1109/TPAMI.2008.75.
  • [65] Porikli F, Tuzel O, Meer P. Covariance tracking using model update based on lie algebra. in: null, IEEE. 2006. pp. 728–35.
  • [66] Qin H, Qin L, Xue L, Yu C. Gabor-based weighted region covariance matrix for face recognition. Electron Lett 2012;48 (16):992–3.
  • [67] Keskin F, Suhre A, Kose K, Ersahin T, Cetin AE, Cetin-Atalay R. Image classification of human carcinoma cells using complex wavelet-based covariance descriptors. PLoS ONE 2013;8(1). http://dx.doi.org/10.1371/journal.pone.0052807.
  • [68] Sivalingam R, Boley D, Morellas V, Papanikolopoulos N. Tensor sparse coding for region covariances. in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2010. pp. 722–35.
  • [69] Boumal N, Mishra B, Absil P-A, Sepulchre R. Manopt, a matlab toolbox for optimization on manifolds. J Mach Learn Res 2014;15(1):1455–9.
  • [70] Pennec X, Fillard P, Ayache N. A riemannian framework for tensor computing. Int J Comput Vis 2006;66(1):41–66. http://dx.doi.org/10.1007/s11263-005-3222-z.
  • [71] Arsigny V, Fillard P, Pennec X, Ayache N. Geometric Means in a Novel Vector Space Structure on Symmetric Positive- Definite Matrices. SIAM J Matrix Anal Appl 2007;29(1):328–47. http://dx.doi.org/10.1137/050637996.
  • [72] Kulis B, Sustik MA, Dhillon IS. Low-rank Kernel learning with Bregman matrix divergences. J Mach Learn Res 2009;10:341–76.
  • [73] Shawe-Taylor J, Cristianini N, et al. Kernel methods for pattern analysis. Cambridge University Press; 2004.
  • [74] Sra S. A new metric on the manifold of kernel matrices with application to matrix geometric means. in: Neural Information Processing Systems. 2012. pp. 144–52.
  • [75] Hein M, Bousquet O. Hilbertian metrics and positive definite kernels on probability measures. in: AISTATS. 2005. pp. 136–43.
  • [76] Fukunaga K. Introduction to statistical pattern recognition. Elsevier; 2013.
  • [77] Zheng Y, Yang J, Wang W, Wang Q, Yang J, Wu X. Fuzzy kernel fisher discriminant algorithm with application to face recognition. in: Intelligent Control and Automation, 2006. WCICA 2006; 2006. pp. 9669–72.
  • [78] Schölkopf B, Smola A, Müller KR. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Comput 1998;10(5):1299–319. http://dx.doi.org/10.1162/089976698300017467.
  • [79] Cai D, He X, Han J. Speed up kernel discriminant analysis. VLDB J 2011;20(1):21–33. http://dx.doi.org/10.1007/s00778-010-0189-3.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e44e98d-db5f-423b-9d1c-d627cae9d3c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.