PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Measurement and three-dimensional calculation of induced electromotive force in permanent magnets heater cylinders

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the electromotive force (EMF) near a permanent magnet heating cylinder was determined using a practical test bench. The aim is to elaborate three-dimensional analytical calculation capable of predicting accurately the same electromagnetic quantities by calculating the induced EMF in the presence of an inductive sensor. The analytical approach is obtained from developing mathematical integrals using the Coulombian approach to permanent magnets. In this approach, rotations are considered by Euler’s transformations matrices permitting the calculation of all permanent magnets flux densities contributions at the same points in the surrounding free space. These points, part of a uniform rectangular grid of the active EMF sensor surface, are used to compute the EMF by Faraday’s law. The validation results between experimental and simulated ones confirm the robustness and the efficiency of the proposed analytical approach.
Rocznik
Strony
315--331
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr., wzory
Twórcy
  • L2EI laboratory, University of Jijel, 18000, Algeria
autor
  • LEC laboratory, University of Constantine1, Algeria
autor
  • L2EI laboratory, University of Jijel, 18000, Algeria
  • LEC laboratory, University of Constantine1, Algeria
  • L2ADI Applied Automation and Industrial Diagnostics Laboratory, University of Djelfa, Algeria
  • Electrical Engineering, University of Hafr Al Batin, Saudi Arabia
Bibliografia
  • [1] Kara, S., (Ed.). (2011). Electromotive Force and Measurement in Several Systems. IntechOpen. https://doi.org/10.5772/2109
  • [2] Yucai W., & Yonggang, L. (2016). Diagnosis of short circuit faults within turbogenerator excitation winding based on the expected electromotive force method. IEEE Transactions on Energy Conversion, 31(2), 706-713. https://doi.org/10.1109/tec.2016.2521422
  • [3] Hao, L., Lin, M., Zhao, X., & Luo, H. (2011, August). Analysis and optimization of BMP waveform of a novel axial field flux-switching permanent magnet machine. In 2011 International Conference on Electrical Machines and Systems (pp. 1-6). IEEE. https://doi.org/10.1109/icems.2011.6073668
  • [4] Wu, J., Deng, Z., Wang, C., & Sun, X. (2016, November). A new sensorless control method for PM machine with 180 degree commutation. In 2016 19th International Conference on Electrical Machines and Systems (ICEMS) (pp. 1-5). IEEE.
  • [5] Hongsheng, H., & Weiguo, L. (2015, October). Research of Speed-torque characteristics of brushless DC motor based on back electromotive force. In 2015 18th International Conference on Electrical Machines and Systems (ICEMS) (pp. 1301-1306). IEEE. https://doi.org/10.1109/icems.2015.7385240
  • [6] Dughiero, F., Forzan, M., Lupi, S., & Zerbetto, M. (2018, June). Induction Heating with Rotating Permanent Magnets: Experimental Results on an Industrial Installation. In 2018 19th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM) (pp. 1-7). IEEE. https://doi.org/10.1109/edm.2018.8435004
  • [7] Aliferov, A., Promzelev, V., Vlasov, D., Morev, A. & Bikeev, R. (2017). Induction heating based on permanent magnets with magnetic field concentrators. Advances in Engineering Research, 133, 495-499. https://doi.org/10.2991/aime-17.2017.80
  • [8] Bojarevics, A. & Beinerts, T. (2010). Experiments on liquid metal flow induced by a rotating magnetic dipole. Magnetohydrodynamics, 46(4), 333-338. https://doi.org/10.22364/mhd.46.4.2
  • [9] Zerbetto, M., Forzan, M., & Dughiero, E. (2015). Permanent magnet heater for a precise control of temperature in aluminum billets before extrusion. Materials Today: Proceedings. 2(10), 4812 4819. https://doi.org/10.1016/j.matpr.2015.10.019
  • [10] Lee, S. J., Kenkel, J. M., Pecharsky, V. K., & Jiles, D. C. (2002). Permanent magnet array for the magnetic refrigerator. Journal of Applied Physics. 97(10), 8894-8896. https://doi.org/10.1063/1.1451906
  • [11] Bjørk, R., Nielsen, K. K., BahI, C. R., Smith, A., & Wulff, A. C. (2016). Comparing superconducting and permanent magnets for magnetic refrigeration. AIP Advances, 6(5), 056205. https://doi.org/10.1063/1.4943305
  • [12] Bouchekara, H. R. E. H., Simsim, M. T., Boucherma, M., & Allag, H. (2012). Multiphysics modeling of a magnetic refrigeration system based on superconductors. Progress In Electromagnetics Research M, 23, 229-247. https://doi.org/10.2528/PIERM11111608
  • [13] Dughiero, P., Forzan, M., Lupi, S., Nicoletti, F. & Zerbetto, M. (2011). A new high efficiency technology for the induction heating of nonmagnetic billets. The International Journal of Computation and Mathematics in Electrical and Electronic Engineering, 30(5), 1528-1538. https://doi.org/10.1108/03321641111152685
  • [14] Karbain, P., Maich, F., & Dolezel, I. (2012). Hard-coupled nonlinear model of induction heading of nonmagnetic cylindrical billets in rotation. COMPEL The International Journal of Computation and Mathematics in Electrical and Electronic Engineering, 31(3), 1368-1378. https://doi.org/10.1108/03321641211247841
  • [15] Ivo, D., Pavel, K., & Frantisek, M. (2014). Induction heating of rotating nonmagnetic billet in magnetic field produced by high-parameter permanent magnets. Electrical Engineering and Electromechanics, 2, 32-36. https://doi.org/10.20998/2074-272x.2014.2.07
  • [16] Mach, F., Karbain, P., & Doležel, I. (2012). Induction heating of cylindrical nonmagnetic ingots by rotation in static magnetic field generated by permanent magnets. Journal of Computational and Applied Mathematics, 256(18), 4732-4744. https://doi.org/10.1016/j.cam.2012.02.035
  • [17] Allag, H., Yonnet, J. P., & Latreche. M. E. (2009, July). 3D analytical calculation of forces between linear Halbach-type permanent-magnet arrays. In 2009 8th International Symposium on Advanced Electromechanical Motion Systems & Electric Drives Joint Symposium (pp. 1-6). IEEE, https://doi.org/10.1109/ELECTROMOTION.2009.5259084
  • [18] Allag, H. (2010). Modeles et Calcul des Systemes de Suspension Magnetique Passive-Developpements et Calculs Analytiques en 2D et 3D des Interactions entre Aimants Permanents. [Doctoral dissertation. Université de Grenoble], https://tel.archives-ouvertes.fr/tel-00569274
  • [19] Zhao, L. Z., Peng, Y., Sha, C. W., Li, R., & Xu, Y. Y. (2010). Permanent Magnet Type Eddy Current Heater Based on Cylindrical Halbach Array for Reducing Oil’s Viscosity. IEEE Transactions on Applied Superconductivity, 20(3), 865-869. https://doi.org/10.1109/tasc.2009.2038932
  • [20] Mach, P., Štarman, V., Karban, P., Doležel. I., & Kůs, P. (2013). Finite-element 2-D model of induction heating of rotating billets in system of permanent magnets and its experimental verification. IEEE Transactions on Industrial Electronics, 61(5), 2584-2591. https://doi.org/10.1109/TIE.2013.2276025
  • [21] Karban, P., Doležel, I., Mach, F., & Ulrych, B. (2013). Advanced adaptive algorithms in 2D finite element method of higher order of accuracy. COMPEL-The intertnational journal for computation and mathematics in electrical and electronic engineering, 32(3), 834-849. https://doi.org/10.1108/03321641311305782
  • [22] Allag, H., Yonnet, J. P., Bouchekara, H. R., Latreche, M. E., & Rubeck, C. (2015). Coulombian model for 3D analytical calculation of the torque exerted on cuboidal permanent magnets with arbitrary oriented polarizations. The Applied Computational Electromagnetics Society Journal (ACES), 30(4). 351-356. https://journals.riverpubIishers.coni/index.php/ACES/article/view/10551
  • [23] Yonnet, J. P. & Allag, H. (2011). Three-Dimensional Analytical Calculation of Permanent Magnet Interactions by "Magnetic Node" Representation. IEEE Transactions on Magnetics, 47(8). 2050-2055. https://doi.org/10.1109/TMAG.2011.2122339
  • [24] Allag, H., Yonnet, J. P., Fassenet, M., & Latreche, M. E. (2009). 3D analytical calculation of interactions between perpendicularly magnetized magnets - Application to any magnetization direction. Sensor letters, 7(3), 486-491. https://doi.org/10.1166/sl.2009.l094
  • [25] Allag, H., & Yonnet, J. P. (2009). 3-D analytical calculation of the torque and force exerted between two cuboidal magnets. IEEE Transactions on Magnetics, 45(10), 3969-3972. https://doi.org/10.1109/TMAG.2009.2025047
  • [26] Allag, H., & Yonnet, J. P. (2013). Analytical Calculation of the Torque Exerted Between Two Permanent Magnets. Sensor Letters, 10(1), 141-144. https://doi.org/10.1166/sl.2013-2775
  • [27] Allag, H., Yonnet, J. P., & Latreche, M. E. (2011). Analytical calculation of the torque exerted between two perpendicularly magnetized magnets. Journal of Applied Physics, 109(1), 07E701. https://doi.org/10.1063/1.3535148
  • [28] Post, R. E. & Ryutov, D. D. (2000). The Inductrack: a simpler approach to magnetic levitation. IEEE Transactions on Applied Superconductivity, 70(1), 901-904. https://doi.org/10.1109/77.828377
  • [29] Ravaud, R., & Lemarquand, G. (2009). Magnetic couplings with cylindrical and plane air gaps: Influence of the magnet polarization direction. Progress In Electromagnetics Research B, 16, 333-349. https://doi.org/10.2528/PIERB09051903
  • [30] Yonnet, J. P. (1978). Passive magnetic bearings with permanent magnets. IEEE Transactions on Magnetics, 14(5), 803-805. https://doi.org/10.1109/TMAG.1978.1060019
  • [31] Takabayashi. H., & Okada, S. (1989). Development of a permanent magnet for a high performance undulator. Review of Scientific Instruments, 60(1), 1842-1844. https://doi.org/10.1063/1.1140918
  • [32] French, C., & Acarnley, P. (1996). Control of permanent magnet motor drives using a new position estimation technique. IEEE Transactions on Industry Applications, 52(5), 1089-1097. https://doi.org/10.1109/28.536870.
  • [33] Reigosa, D. D., Fernandez, D., Tanimoto, T., Kato, T., & Briz, F. (2016). Permanent-magnet temperature distribution estimation in permanent-magnet synchronous machines using back electromotive force harmonics. IEEE Transactions on Industry Applications, 52(4), 3093-3103. https://doi.org/10.1109/TIA.2016.2536579
  • [34] De Bisschop, J., Vansompel, H., Sergeant, P., & Dupre, L. (2017). Demagnetization fault detection in axial flux PM machines by using sensing coils and an analytical model. IEEE Transactions on Magnetics, 53(6), 1-4. https://doi.org/10.1109/TMAG.2017.2669480
  • [35] Djemoui, S., Allag, H., Chebout, M. & Bouchekara, H. (2021). Partial Electrical Equivalent Circuits and Finite Difference Methods Coupling; Application to Eddy Currents Calculation for Conductive and Magnetic Thin Plates. Progress in Electromagnetics Research C, 114, 83-96. https://doi.org/10.2528/PIERC21051602
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e3f997f-7b62-45e5-9a36-7ac0b7c082c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.