Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Nowe podejście do problematyki recyklingu zużytych katalizatorów
Języki publikacji
Abstrakty
In the last decade the main application of precious metals has been the production of auto catalytic converters. The life time of catalytic converters is limited and after that time remains a rich source of platinum group metals. The article presents currently used pyro-and hydrometallurgical precious metals recovery methods. However, particular attention is dedicated to the new trends in biohydrometallurgy, focused on the possibility of using cyanogenic microorganisms potential in biological leaching of precious metals. A review of the achievements and results of laboratory tests for the extraction of precious metals from waste materials by bacteria leaching has been presented. The areas of research that require further explanation and solutions have been indicated. The article also gives suggestions for further laboratory work towards the use of cyanogenic microorganisms for recovery of platinum group metals from solid waste. The work also presents innovative solutions for the management of residues (specifically cordierite carriers) following the processing of used automotive catalytic converters through pyro-, hydro-, or bio-based methods.
W ostatniej dekadzie głównym zastosowaniem metali szlachetnych była produkcja katalizatorów samochodowych. Żywotność katalizatorów jest ograniczona i po tym czasie pozostaje bogatym źródłem metali z grupy platynowców. W artykule przedstawiono obecnie stosowane metody odzyskiwania piro- i hydrometalurgicznego metali szlachetnych. Szczególną uwagę poświęcono jednak nowym trendom w biohydrometalurgii, skupiającym się na możliwości wykorzystania potencjału mikroorganizmów cyjanogennych w biologicznym ługowaniu metali szlachetnych. W pracy przedstawiono przegląd osiągnięć i wyników badań laboratoryjnych ekstrakcji metali szlachetnych z materiałów odpadowych metodą wymywania bakteryjnego, wskazano obszary badań wymagające dalszego wyjaśnienia i rozwiązań. W artykule przedstawiono także sugestie dotyczące dalszych prac laboratoryjnych,, w kierunku wykorzystania mikroorganizmów cyjanogennych do odzyskiwania metali z grupy platynowców z odpadów stałych. W pracy przedstawiono także innowacyjne rozwiązania w zakresie zagospodarowania pozostałości (w szczególności nośników kordierytowych) po przetworzeniu zużytych katalizatorów samochodowych metodami pirometalurgicznymi, hydrohydrometalurgicznymi i biohydrometalurgicznymi.
Wydawca
Czasopismo
Rocznik
Tom
Strony
40--46
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
autor
- Faculty of Material Engineering, Silesian University of Technology, 2A Akademicka st., 40-019 Gliwice, Poland
autor
- Faculty of Material Engineering, Silesian University of Technology, 2A Akademicka st., 40-019 Gliwice, Poland
autor
- Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology 2A Akademicka st., 40-019 Czestochowa, Poland
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego str, 50-370 Wrocław, Poland
Bibliografia
- [1] Angelidis T. N. Development of a laboratory scale hydrometallurgical procedure for the recovery of Pt and Rh from spent automotive catalysts. Top. Catal. 1-4, (16/17) 419. 2001 https://doi.org/10.1023/A:1016641906103.
- [2] Benson M., Bennett C. R.., Harry J. E. The recovery mechanism of platinum group metals from catalytic converters in spent automotive exhaust systems. Resour. Conserv. Recy. 31, 2000. https://doi.org/10.1016/S0921-3449(00)00062-8.
- [3] Bosshard P., Bachofen R., Brandl H., Metal leaching of fly ash from municipal waste incineration by Aspergillus niger. Environ. Sci. Technol. 30 (10) 3066. 1996 https://doi.org/10.1021/es960151v.
- [4] Brandl H., Bosshard R., Wegmann M. Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy. 59 (2-3) 319. 2001 https://doi.org/10.1016/S0304-386X(00)00188-2.
- [5] Brandl, H., Faramarzi, M. A., Applying microbe-metal-interactions for the biotechnological treatment of mineral waste. China Particuol. 4, 93-97. 2006 https://doi.org/10.1016/S1672-2515(07)60244-9.
- [6] Brandl H, Lehmann S, Faramarzi Ma, Martinelli D. Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms. Hydrometallurgy. 94,14, 2008 https://doi.org/10.1016/j.hydromet.2008.05.016.
- [7] Brombacher Ch., Bachofen R., Brandl H. Development of a laboratory-scale leaching plant for metal extraction from fly ash by Thiobacillus strains. Appl. Environ. Microbiol. 64 (4) 1237, 1998 https://doi:10.1128/aem.64.4.1237-1241.1998.
- [8] Byung-Su K., Jae-Chun L., Seung-Pil S. A process for extracting precious metals from spent printed circuit boards and automobile catalysts. JOM, 12 55, 2004 https://doi.org/10.1007/s11837-004-0237-9.
- [9] Campbell S., Olson G., Clark T., Mcfeters G. Biogenic production of cyanide and its application to gold recovery. J. Ind. Microb. Biotech. 26 134, 2001 https://doi.org/10.1038/sj.jim.7000104.
- [10] Castric P. Hydrogen cyanide, a secondary metabolite of Pseudomonas aeruginosa. Can J Microbiol. 21 613 1975 https://doi.org/10.1139/m75-088.
- [11] Chadwick B. M., Sharpe, A. G. Transition metal cyanides and their complexes. Adv. Inorg. Chem. Rad. 8, 83, 1966 https://doi.org/10.1016/S0065-2792(08)60201-0.
- [12] Clawson B. J., Young C. C. Preliminary report on the production of hydrocyanic acid by bacteria. J Biol. Chem. 15, (1913) 419.
- [13] Creczyński-Pasa T. B., Antonio R. V. Energetic metabolism of Chromobacterium violaceum. GMR J. 3 (2004) 162.
- [14] Debaraj M., Dong J. K., Ralph D. E., Jong-Gwan Ahn, Young-Ha Rhee. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manage. 28 (2), 333, 2008 https://doi.org/10.1016/j.wasman.2007.01.010.
- [15] Debaraj M., Dong J. K., Ralph D. E., Jong G. Ahna, Young H. R. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect. J. Hazard. Mater. 152 (3) 1082, 2008 https://doi.org/10.1016/j.wasman.2007.01.010.
- [16] Faramarzi M. A., Brandl H. Formation of water-soluble metal cyanide complexes from solid minerals by Pseudomonas plecoglossicida. FEMS Microbiol. Lett. 259 47, 2006 https://doi.org/10.1111/j.1574-6968.2006.00245.x.
- [17] Faramarzi M. A., Stagars M., Pensini E., Krebs W., Brandl H. Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum. J. Biotechnol. 113 321 2004 https://doi.org/10.1016/j.jbiotec.2004.03.031.
- [18] Fornalczyk, A., Saternus, M., The possibilities of reusing the ceramic carriers coming from used auto catalytic converters. Adv. Ceramic Sci. Eng. 2 (2), 56-63, 2013.
- [19] Hong H., Yunbo Y. Selective catalytic reduction of NOx over Ag/Al2O3 catalyst: from reaction mechanism to diesel engine test, Catalysis Today 100 37-47, 2005 https://doi.org/10.1016/j.cattod.2004.11.006.
- [20] Igeño M. I., Orovengua E., Guijo M. I., Merchán F., Quesada A., Blasco A.: Biodegradation of cyanide-containing wastes by Pseudomonas pseudoalcaligenes CECT5344, Communicating Current Research and Educational Topics and Trends in Applied Microbiology Edition 100-107, 2007, https://doi.org/10.1128/AEM.00503-07.
- [21] Johnson Matthey PGM market report May 2022 - available online - accessed 17/10/2023.
- [22] Kayanuma Y., Okabe T., Maeda M.: Metal Vapour Treatment for Enhancing the Dissolution of Platinum Group Metals from Automotive Catalyst Strap, Metallurgical and Material Transactions, 35B 817-824, 2004 https://doi:10.1128/AEM.00503-07.
- [23] Knowles C. J., Bunch A. W. Microbial cyanide metabolism. Adv. Microb. Physiol. 27 73, 1986 https://doi:10.1016/s0065-2911(08)60304-5.
- [24] Lawson E. N., Barkhuizen M., Dew D. W. Gold solubilisation by the cyanide producing bacteria Chromobacterium violaceum. Proc. of Int. Biohydrometallurgy Symp., Biohydrometalurgy and the Environment towards the Mining of 21st Century, Process Metallurgy. 9 (1), 239 Madrid, Spain 1999.
- [25] Manis Kumar J., Jae-Chun L., Min-Seuk K., Jinki J., Byung-Su K., Vinay K. Hydrometallurgical recovery/recycling of platinum by the leaching of spent catalysts: A review. Hydrometallurgy 133 23, 2013 https://doi.org/10.1016/j.hydromet.2012.11.01.
- [26] Mishra, R. K., A review of platinum group metals recovery from automobile catalytic converters. In: Proceedings of the 7th International Precious Metal Institute Conference, Newport, Rhode Island, 449–474, 1993.
- [27] Niemczyk-Wojdyła A., Fornalczyk A., Willner J., Zawisz R.: New directions for the use of spent catalysts as sorbents for removing impurities from liquids Gaz, Woda i Technika Sanitarna, 9 2023, 33-38, https://doi.org/10.15199/17.2023.9.5.
- [28] Pathak A., Dastidar M. G., Sreekrishnan T. R., Bioleaching of heavy metals from sewage sludge by indigenous iron-oxidizing microorganisms using ammonium ferrous sulfate and ferrous sulphate as energy sources: A comparative study. J. Hazard. Mater., 171 (1-3) 273, 2009 https://doi.org/10.1016/j.jhazmat.2009.05.139.
- [29] Patil, Y. B., Paknikar, K. M., Removal and recovery of metal cyanides using a combination of biosorption and biodegradation processes. Biotechnol. Lett. 21, 913-919, 1999.
- [30] Pham V. A., Ting Y. P. Gold bioleaching of electronic waste by cyanogenic bacteria and its enhancement with bio-oxidation. Adv. Mater. Res. 661 71, 2009 https://doi.org/10.4028/www.scientific.net/AMR.71-73.661.
- [31] Rao R.,: Resource recovery and recycling from metallurgical wastes.1st ed.; Elsevier Oxford University UK, pp. 2006.
- [32] Santhiya D., Ting Y. P. Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid. J. Biotechnol. 116 (2) 171, 2005 https://doi.org/10.1016/j.jbiotec.2004.10.011.
- [33] Smith A. D., Hunt R. J. Solubilisation of gold by Chromobacterium violaceum. J. Chem. Technol. Biotechnol. 35B 110, 1985.
- [34] Salman K., Yen-Peng T., Bioleaching of platinum, palladium, and rhodium from spent automotive catalyst using bacterial cyanogenesis, Bioresource Technology Reports, 18 101069, 2022 https://doi.org/10.1016/j.biteb.2022.101069.
- [35] Salman K., Yen-Peng T. A novel sequential pretreatment coupled with statistically optimized bioleaching for highly effective biorecovery of platinum group metals from spent catalyst waste, Journal of Environmental Chemical Engineering, 11 (5) 110987, 2023 https://doi.org/10.1016/j.jece.2023.110987.
- [36] Tran Ch. D., Lee J-Ch, Pandey B. D., Yoo K., Jeong J. Bioleaching of gold and copper from waste mobile phone PCBs by using a cyanogenic bacterium. Miner. Eng. 24 1219, 2011 https://doi.org/10.1016/j.mineng.2011.05.009.
- [37] Tran Ch. D., Lee J.-Ch., Pandey B. D., Jeong J., Yoo K., Huynh T. H.,. Bacterial cyanide generation in the presence of metal ions (Na+, Mg2+, Fe2+, Pb2+) and gold bioleaching from waste PCBs. J. Chem. Eng. Japan. 44, 692, 2011 https://doi.org/10.1252/jcej.10we232.
- [38] Trinh H. B., Lee J.Ch. Suh Y. J., Lee J.: A review on the recycling processes of spent auto-catalysts: Towards the development of sustainable metallurgy, Waste Management 114 148-165, 2020 https://doi.org/10.1016/j.wasman.2020.06.030.
- [39] Willner J., Fornalczyk A. Extraction of metals from electronic waste by bacterial leaching, Environ. Prot. Eng. 39 (1) 197-208 2013 https://doi.org/10.5277/EPE130115.
- [40] Yakoumis I., Panou M., Moschovi A. M., Panias D., Recovery of platinum group metals from spent automotive catalysts: A review Cleaner Engineering and Technology, 3 100112, 2021 https://doi.org/10.1016/j.clet.2021.100112.
- [41] Yoo J. S,. Metal recovery and rejuvenation of metal-loaded spent catalyst. Catal. Today 44, 27, 1998 https://doi.org/10.1016/S0920-5861(98)00171-0.
- [42] Yuan-Shan W., Zhi-Yan P., Jian-Min L. Jian-Miao X., Yu-Guo Z. Bioleaching of chromium from tannery sludge by indigenous Acidithiobacillus thiooxidans. J. Hazard. Mater. 147 (1-2) 319, 2007 https://doi.org/10.1016/j.jhazmat.2007.01.005.
- [43] Zhang, L., Song, Q., Liu, Y., Xu, Z., Novel approach for recovery of palladium in spent catalyst from automobile by a capture technology of eutectic copper. Journal of Cleaner Production 239, 118093 2019 https://doi.org/10.1039/C8TA08134D.
- [44] Zhang, L., Song, Q., Liu, Y., Xu, Z., 2020. An integrated capture of copper scrap and electrodeposition process to enrich and prepare pure palladium for recycling of spent catalyst from automobile. Waste Manage. 108, 172-182. https://doi.org/10.1016/j.wasman.2020.04.013.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Identyfikator YADDA
bwmeta1.element.baztech-6e3efe4d-2a1b-4cb3-85ff-f0e29ee805dd