Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The inhomogeneous deformation which appears in hot rough rolling of aluminum alloy plate, reduces rolling output and negatively affects the rolling process. To study the formation mechanism of the inhomogeneous deformation, a finite element model for the five-pass hot rough rolling process of aluminum alloy plate is built. Results show that inhomogeneous deformation distribution in thickness direction causes two bulges at head and tail ends, as indicated by the analysis of the equivalent plastic strain distribution and deformation. However, formation mechanism of the inhomogeneous deformation at head end differs from that at tail end. Changing the end shape and angular rolling are adopted for decreasing the length and width of the crocodile mouth. It can be found that the crocodile mouth can be improved effectively by increasing the central bump length and the rotation angles through simulation and experiments. Then, the combination effect of two methods is simulated and results show that the combination effect is better than respectively using of each method. In addition, combination of two methods can avoid the restricted conditions for respectively using of each method.
Czasopismo
Rocznik
Tom
Strony
245--255
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
- National Engineering Research Center of Advanced Rolling, University of Science and Technology Beijing, Beijing 100083, China
autor
- National Engineering Research Center of Advanced Rolling, University of Science and Technology Beijing, Beijing 100083, China
autor
- National Engineering Research Center of Advanced Rolling, University of Science and Technology Beijing, Beijing 100083, China
Bibliografia
- [1] A.R. He, F.W. Jing, S.Y. Zong, et al., Computer control system of wide hot rolling aluminum strip, World Nonferrous Metals 10 (2015) 14–19.
- [2] H. Liu, The Simulation on Forming Process of Crocodile Mouth Shape and Process Optimization during Aluminum Plate Hot Rolling, University of Science and Technology, Beijing, 2014, pp. 1–2.
- [3] R.G. Guan, Z.Y. Zhao, R.Z. Chao, et al., Effects of technical parameters of continuous semisolid rolling on microstructure and mechanical properties of Mg–3Sn–1Mn alloy, Transactions of Nonferrous Metals Society of China 23 (1) (2013) 73–79. , http://dx.doi.org/10.1016/S1003-6326(13) 62431-0.
- [4] A.A. Khamei, K. Dehghani, Effects of strain rate and temperature on hot tensile deformation of severe plastic deformed 6061 aluminum alloy, Materials Science & Engineering A 627 (2014) 1–9. , http://dx.doi.org/10.1016/j. msea.2014.12.081.
- [5] T. Zhang, Y.X. Wu, H. Gong, et al., Effects of rolling parameters of snake hot rolling on strain distribution of aluminum alloy 7075, Transactions of Nonferrous Metals Society of China 24 (7) (2014) 2150–2156. , http://dx.doi.org/ 10.1016/S1003-6326(14)63326-4.
- [6] M.F. Novella, A. Ghiotti, S. Bruschi, et al., Modelling of AA6082 ductile damage evolution under hot rolling conditions, Procedia Engineering 81 (2014) 221–226. , http://dx.doi.org/ 10.1016/j.proeng.2014.09.154.
- [7] H.R. Ashtiani, H. Bisadi, M.H. Parsa, Inhomogeneity of temperature distribution through thickness of the aluminium strip during hot rolling, Archive Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science 225 (12) (2011) 2938–2952. , http://dx.doi.org/10.1177/0954406211408951.
- [8] H.R. Ashtiani, Simulation of temperature distribution inhomogeneity in aluminum alloy during hot rolling, International Review on Modelling & Simulations 3 (2010) 1137–1144.
- [9] Z.Y. Hu, J.M. Yang, Z.W. Zhao, et al., Multi-objective optimization of rolling schedules on aluminum hot tandem rolling, International Journal of Advanced Manufacturing Technology 85 (1) (2016) 85–97. , http://dx.doi.org/10.1007/ s00170-015-7909-1.
- [10] J.M. Yang, M.M. Ma, H.J. Che, et al., Optimization of multi-objective rolling schedules for hot rolling aluminum mill based on chaotic particle swarm algorithm, Journal of Plasticity Engineering 2 (2016) 22–27.
- [11] J.M. Yang, Q.C. Guo, H.J. Che, et al., Aluminum hot strip mill rolling schedule optimization based on the algorithm of DE-EDA, Journal of Plasticity Engineering 1 (2016) 63–68.
- [12] H.L. Ding, K. Nao, H. Tomoyuki, et al., FEM analysis for hot rolling process of AM60 alloy, Transactions of Nonferrous Metals Society of China 18 (S1) (2008) s242–s246. , http://dx. doi.org/10.1016/S1003-6326(10)60210-5.
- [13] M. Jiang, X.J. Li, J.G. Wu, et al., A precision on-line model for the prediction of thermal crown in hot rolling processes, International Journal of Heat & Mass Transfer 78 (2014) 967–973. , http://dx.doi.org/10.1016/j.ijheatmasstransfer. 2014.07.061.
- [14] S. Schindler, P. Steinmann, J.C. Aurich, et al., A thermo-viscoplastic constitutive law for isotropic hardening of metals, Archive of Applied Mechanics 87 (1) (2017) 129–157. , http://dx.doi.org/10.1007/s00419-016-1181-1.
- [15] A.B. Nellippallil, P.S. De, A. Gupta, et al., Hot rolling of a non-heat treatable aluminum alloy: thermo-mechanical and microstructure evolution model, Transactions of the Indian Institute of Metals (2016) 1–12. , http://dx.doi.org/10.1007/ s12666-016-0935-3.
- [16] J. Zhou, F.L. Wang, M.H. Wang, et al., Study on forming defects in the rolling process of large aluminum alloy ring via adaptive controlled simulation, The International Journal of Advanced Manufacturing Technology 55 (1) (2011) 95–106. , http://dx.doi.org/10.1007/s00170-010-3023-6.
- [17] L. Wang, Research on Deformation Behavior of 3300 mm Aluminum Plate Hot Rolling Mill in Angular Rolling, University of Science and Technology, Beijing, 2012, pp. 8–12.
- [18] X. Duan, T. Sheppard, Three dimensional thermal mechanical coupled simulation during hot rolling of aluminum alloy 3003, International Journal of Mechanical Sciences 44 (10) (2002) 2155–2172. , http://dx.doi.org/10.1016/ S0020-7403(02)00164-9.
- [19] W.G. Guo, H.W. Tian, Strain rate sensitivity and constitutive models of several typical aluminum alloys, The Chinese Journal of Nonferrous Metals 19 (1) (2009) 56–61.
- [20] H.Z. Li, X.M. Zhang, M.A. Chen, et al., Hot deformation behavior of 2519 aluminum alloy, The Chinese Journal of Nonferrous Metals 15 (4) (2005) 621–625.
- [21] L. Chen, G. Zhao, J. Yu, Hot deformation behavior and constitutive modeling of homogenized 6026 aluminum alloy, Materials & Design 74 (2015) 25–35. , http://dx.doi.org/ 10.1016/j.matdes.2015.02.024.
- [22] M.R. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, et al., An investigation into the hot deformation characteristics of 7075 aluminum alloy, Materials & Design 32 (4) (2011) 2339– 2344. , http://dx.doi.org/10.1016/j.matdes.2010.12.047.
- [23] L.P. Yang, Y. Peng, H.M. Liu, Two-Dimensional transient temperature field of finish rolling section in hot tandem rolling, Journal of Iron and Steel Research (International) 11 (4) (2004) 29–33.
- [24] Q.Q. Zhang, Y.M. Liu, J. Yao, Numerical simulation of plate rolling process, Iron Steel Vanadium Titanium 25 (3) (2004) 10–16.
- [25] Y.W. He, Effect of the Temperature Field on Deformation of Aluminum Alloys, Central South University, 2012, pp. 20–21.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e3d5ac7-1a3b-4bee-b0c5-d9a758629e2e