PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ecological and health risk assessment of soil heavy metal contamination along National Highway 107 in China

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates soil heavy metal contamination behind the green belts along National Highway 107 in China. Soil samples were collected from both sides of the highway to determine the concentrations of heavy metals such as copper, cadmium, chromium, lead, and zinc. The distribution patterns, ecological risks, and health hazards associated with these heavy metals were analysed. In order to provide more sample examples and data support for soil heavy metal pollution control. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was employed to detect the concentrations and speciation of these five heavy metals in the soil samples. The Geo-Accumulation Index method, the Nemerow pollution index method, and a health risk assessment model were used to evaluate the ecological and health risks of heavy metal pollution adjacent to the highway. Results indicated that: (1) The concentrations of Cu, Cd, Cr, Pb, and Zn in the soil decreased with the increasing number of protective forest layers, highlighting the significant role of protective belts in impeding the migration of heavy metals from the highway. (2) In terms of pollution assessment, the Geo-accumulation index method revealed prominent Cd contamination, the Geo-accumulation index of Cd peaked at 1.95 indicating a moderate to mild pollution level overall. Conversely, the Nemerow index method suggested a medium to extremely high risk of soil heavy metal Cd contamination. Specifically, the peak value of Cd single-factor pollution index in the study area reached 5.78, and the mean value of its Nemerow index (P) was 4.67. (3) In health risk assessment, it was found that children are more susceptible to heavy metal threats. The non-carcinogenic risk indices of all five heavy metals were less than 1, implying minimal risk. However, the total carcinogenic risk index for Cr ranged between 10–6 and 10–4, posing a certain level of carcinogenic risk to humans.
Rocznik
Strony
155--175
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
  • School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
autor
  • School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
autor
  • School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
autor
  • School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China
Bibliografia
  • [1] Gan W, Zhang Y, Xu J, Yang R, Xiao A, Hu X. Spatial distribution of soil heavy metal concentrations in road-neighboring areas using UAV-based hyperspectral remote sensing and GIS technology. Sustainability. 2023;15(13):10043. DOI: 10.3390/su151310043.
  • [2] Bhat NA, Ghosh P, Ahmed W, Naaz F, Darshinee AP. Heavy metal contamination in soils and stream water in Tungabhadra basin, Karnataka: Environmental and health risk assessment. Int J Environ Sci Technol. 2023;20(3):3071-84. DOI: 10.1007/s13762-022-04040-y.
  • [3] Velázquez-Chávez LJ, Chávez-Simental JA, Pámanes-Carrasco GA, Pereda-Solís ME, Carrillo-Parra A, Ortiz-Sánchez IA. Anthropogenic impact on the quality of water and agricultural soil in Guadiana Valley, Durango, Mexico. Ecol Chem Eng S. 2023;30(3):373-86. DOI: 10.2478/eces-2023-0039.
  • [4] Li L, Yan X. Insights into the roles of melatonin in alleviating heavy metal toxicity in crop plants. Phyton. 2021;90(6):1559. DOI: 10.32604/phyton.2021.016692.
  • [5] Maksimtsev S, Dudarets S, Yukhnovskyi V. Accumulation of heavy metals in soil and litter of roadside plantations in Western Polissia of Ukraine. Folia Forestalia Polonica. 2021;63(3):232-42. DOI: 10.2478/ffp- 2021-0024.
  • [6] Anjum S, Sarwar M, Ali Q, Alam MW, Manzoor MT, Mukhtar A. Assessment of bioremediation potential of Calotropis procera and Nerium oleander for sustainable management of vehicular released metals in roadside soils. Sci Rep. 2024;14(1):8920. DOI: 10.1038/S41598-024-58897-9.
  • [7] Zhang J, Guan Y, Lin Q, Wang Y, Wu B, Liu X, et al. Spatiotemporal differences and ecological risk assessment of heavy metal pollution of roadside plant leaves in Baoji City, China. Sustainability. 2022:14(10):5809. DOI: 10.3390/SU14105809.
  • [8] Zhang J, Li H, Zhou Y, Dou L, Cai L, Mo L, et al. Bioavailability and soil-to-crop transfer of heavy metals in farmland soils: A case study in the Pearl River Delta, South China. Environ Pollut. 2018;235:710-9. DOI: 10.1016/j.envpol.2017.12.106.
  • [9] Fang T, Jiang T, Yang K, Li J, Liang Y, Zhao X, et al. Biomonitoring of heavy metal contamination with roadside trees from metropolitan area of Hefei, China. Environ Monitoring Assess. 2021;193:151. DOI: 10.1007/S10661-021-08926-1.
  • [10] Guan DS, Peart MR. Heavy metal concentrations in plants and soils at roadside locations and parks of urban Guangzhou. J Environ Sci. 2006;18(3):495-502. DOI: 10.3321/j.issn:1001-0742.2006.03.014.
  • [11] Sobik-Szoltysek J, Jablonska B. Possibilities of joint management of sewage sludge and dolomite post-flotation waste. Ecol Chem Eng S. 2010;17(2):149-59.
  • [12] Yang J, Ma Z, Ye Z, Guo X, Qiu R. Heavy metal (Pb, Zn) uptake and chemical changes in rhizosphere soils of four wetland plants with different radial oxygen loss. J Environ Sci. 2010;22(5):696-702. DOI: 10.1016/S1001-0742(09)60165-0.
  • [13] Nouri H, Hashempour Y. Phytoremediation of Cd and Pb in polluted soil: A systematic review. Int J Environ Anal Chem. 2023;103(17):6017-26. DOI: 10.1080/03067319.2021.1946688.
  • [14] Malunguja GK, Thakur B, Devi A. Heavy metal contamination of forest soils by vehicular emissions: ecological risks and effects on tree productivity. Environ Processes. 2022;9(1):11. DOI: 10.1007/s40710-022-00567-x.
  • [15] Lindh P, Lemenkova P. Leaching of heavy metals from contaminated soil stabilised by Portland cement and slag Bremen. Ecol Chem Eng S. 2022;29(4):537-52. DOI: 10.2478/eces-2022-0039.
  • [16] Almeida AAFD, Valle RR, Mielke MS, Gomes FP. Tolerance and prospection of phytoremediator woody species of Cd, Pb, Cu and Cr. Braz J Plant Physiol. 2007;19:83-98. DOI: 10.1590/S1677-04202007000200001.
  • [17] Seregin IV, Ivanov VB. Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol. 2001;48:523-44. DOI: 10.1023/A:1016719901147.
  • [18] Li FR, Kang LF, Gao XQ, Hua W, Yang FW, Hei WL. Traffic-related heavy metal accumulation in soils and plants in Northwest China. Soil Sediment Contamin. 2007;16(5):473-84. DOI: 10.1080/15320380701490168.
  • [19] Emumejakpor SI, Adeniyi JA. Comparative analysis of heavy metal concentrations and potential health risks across varied land-use zones in Ado-Ekiti, Southwest Nigeria. Acadlore Trans. Geosci. 2023;2(2):113-31. DOI: 10.56578/atg020205.
  • [20] Zhang LM, Cong Y, Meng FZ, Wang ZQ, Zhang P, Gao S. Energy evolution analysis and failure criteria for rock under different stress paths. Acta Geotech. 2021;16(2):569-80. DOI: 10.1007/s11440-020-01028-1.
  • [21] Hanfi MY, Seleznev AA, Yarmoshenko IV, Malinovsky G, Konstantinova EY, Alqahtani MS, et al. Heavy metal contamination levels, source distribution, and risk assessment in fine sand of urban surface deposited sediments of Ekaterinburg, Russia. Environ Geochem Health. 2023;45(7):4389-406. DOI: 10.1007/S10653-023-01494-Y.
  • [22] Zhou T, Xing Q, Sun J, Wang P, Zhu J, Liu Z. The mechanism of KpMIPS gene significantly improves resistance of Koelreuteria paniculata to heavy metal cadmium in soil. Sci Total Environ. 2024;906:167219. DOI: 10.1016/j.scitotenv.2023.167219.
  • [23] Prakash P. Nano-phytoremediation of heavy metals from soil: a critical review. Pollutants. 2023;3(3):360-80. DOI: 10.3390/POLLUTANTS3030025.
  • [24] Shi J, Qian W, Jin Z, Zhou Z, Wang X, Yang X. Evaluation of soil heavy metals pollution and the phytoremediation potential of copper-nickel mine tailings ponds. PLoS One. 2023;18(3):e0277159. DOI: 10.1371/journal.pone.0277159.
  • [25] Mahvi AH, Eslami F, Baghani AN, Khanjani N, Yaghmaeian K, Mansoorian HJ. Heavy metal pollution status in soil for different land activities by contamination indices and ecological risk assessment. Int J Environ Sci Technol. 2022;19(8):7599-616. DOI: 10.1007/s13762-022-03960-z.
  • [26] DZ/T 0295-2016. Specification for geochemical evaluation of land quality. 2016. Available from: https://std.samr.gov.cn/hb/search/stdHBDetailed?id=8B1827F26841BB19E05397BE0A0AB44A
  • [27] GB 15618-2018. Soil environmental quality risk control standards for soil pollution on agricultural land. Ministry of Ecology and Environment of the People’s Republic of China. 2018. Available from: https://www.chinesestandard.net/Related.aspx/GB15618-2018.
  • [28] Haris H, Looi LJ, Aris AZ, Mokhtar NF, Ayob NAA, Yusoff MD, et al. Geo-accumulation index and contamination factors of heavy metals (Zn and Pb) in urban river sediment. Environ Geochem Health. 2017;39:1259-71. DOI: 10.1007/s10653-017-9971-0.
  • [29] Awadallah RM, Soltan ME, Rashed MN. Relationship between heavy metals in mud sediments and beach soil of the River Nile. Environ Int. 1996;22(2):253-8. DOI: 10.1016/0160-4120(96)00010-4.
  • [30] Zhang LM, Chao WW, Liu ZY, Cong Y, Wang ZQ. Crack propagation characteristics during progressive failure of circular tunnels and the early warning thereof based on multi-sensor data fusion. Geomechan Geophys Geo-Energy Geo-Resources. 2022;8:172. DOI: 10.1007/s40948-022-00482-3.
  • [31] Ni S, Ju Y, Hou Q, Wang S, Liu Q, Wu Y, et al. Enrichment of heavy metal elements and their adsorption on iron oxides during carbonate rock weathering process. Progress Natural Sci. 2009;19(9):1133-9. DOI: 10.1016/j.pnsc.2009.01.008.
  • [32] Wei J, Zheng X, Liu J. Modeling analysis of heavy metal evaluation in complex geological soil based on Nemerow index method. Metals. 2023;13(2):439. DOI: 10.3390/MET13020439.
  • [33] Isvoran A, Roman DL, Dascalu D, Vlad-Oros B, Ciorsac A, Pitulice L, et al. Human health effects of heavy metal pollution in the cross-border area of Romania and Serbia: A review. Ecol Chem Eng S. 2021;28(3):365-88. DOI: 10.2478/eces-2021-0025.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e3d0034-bacd-434a-a18a-f01116d895d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.