PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A discrete-continuous method of mechanical system modelling

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes a discrete-continuous method of dynamic system modelling. The presented approach is hybrid in its nature, as it combines the advantages of spatial discretization methods with those of continuous system modelling methods. In the proposed method, a three-dimensional system is discretised in two directions only, with the third direction remaining continuous. The thus obtained discrete-continuous model is described by a set of coupled partial differential equations, derived using the rigid finite element method (RFEM). For this purpose, firstly the general differential equations are written. Then these equations are converted into difference equations. The derived equations, expressed in matrix form, allow to create a global matrix for the whole system. They are solved using the distributed transfer function method. The proposed approach is illustrated with the examples of a simple beam fixed at both ends and a simply supported plate.
Rocznik
Tom
S 1
Strony
97--107
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
  • Gdansk University of Technology Narutowicza 11/12, 80-233 Gdansk Poland
Bibliografia
  • 1. Hein R., Orlikowski C.: Hybrid reduced model of rotor, The Archive of Mechanical Engineering, Vol. LX, No 3, pp. 319-333, 2013.
  • 2. Hein R., Orlikowski C.: Optimum control of gyroscopic systems, Solid State Phenomena, Vol. 164, pp. 121-126, 2013.
  • 3. Kaliński K. J., Galewski M. A.: A modified method of vibration surveillance by using the optimal control at energy performance index. Mechanical Systems and Signal Processing 58-59 (2015) 41-52.
  • 4. Kaliński K. J., Galewski M. A.: Chatter vibration surveillance by the optimal-linear spindle speed control. Mechanical Systems and Signal Processing Volume 25, Issue 1, January 2011, Pages 383–399.
  • 5. Kruszewski J., Gawroński W., Wittbrodt E., Najbar F., Grabowski S.: Metoda sztywnych elementów skończonych [Rigid finite element method], Arkady, Warszawa 1975.
  • 6. Kujawa M., Szymczak C.: Numerical and experimental investigation of rotational stiffness of zed-purlins connection with sandwich panels// THIN-WALLED STRUCTURES. -Vol. 75, (2014), s.43-52.
  • 7. Lipiński K.: Modeling and control of a redundantly actuated variable mass 3RRR planar manipulator controlled by a model-based feedforward and a model-based-proportional-derivative feedforward–feedback controller. Mechatronics 37 (2016), 42-53.
  • 8. Orlikowski C., Hein R.: A simplified model of 3-D pipe system conveying flowing liquid, Solid State Phenomena, Vol. 198, pp. 621-626, 2013.
  • 9. Orlikowski C., Hein R.: Modelling of geared multi-rotor system, Solid State Phenomena, Vol. 198, pp. 669-674, 2013.
  • 10. Orlikowski C., Hein R.: Modelling and analysis of beam/ bar structure by application of bond graphs. Journal of Theoretical and Applied Mechanics, Vol. 49, No. 4, 2011.
  • 11. Orlikowski C., Hein R.: Modal reduction and analysis of gyroscopic systems, Solid State Phenomena, Vol. 164, pp. 189-194, 2010.
  • 12. Park D.-H., Yang B.: Distributed transfer function analysis of multi-body prismatic elastic solids, Int. J. of Structural stability and dynamics, Vol. 1, No. 1, pp. 83-104, 2001.
  • 13. Wittbrodt E., Adamiec-Wójcik I., Wojciech S.: Dynamics of Flexible Multibody Systems. Rigid Finite Element Method. Foundations of Engineering Mechanics. Springer, Germany 2006. Pp. 225 (ISBN 3-540-32351-1, SPIN 11593553).
  • 14. Wittbrodt E., Szczotka M., Maczyński A., Wojciech S.: Rigid finite element method in analysis of dynamics of offshore structures. Ocean Engineering & Oceanography 1. Springer-Verlag Berlin Heidelberg, 2013. Pp. 252 (ISBN 978-3-642-29885-1, ISSN 2194-6396).
  • 15. Yang B., Tan C.A.: Transfer functions of one-dimensional distributed parameter systems, ASME Journal of Applied Mechanics, Vol. 59, December, pp. 1009 – 1014 , 1992.
  • 16. Yang B.: Distributed transfer function analysis of complex distributed parameter systems, ASME Journal of Applied Mechanics, Vol. 61, pp. 84 – 92, 1994.
  • 17. Yang B., Zhou J.: Semi-analytical solution of 2-D elasticity problems by the strip distributed transfer function method, Int. J. Solids Structures, Vol. 33, No. 27, pp. 3983-4005,1996.
  • 18. Zhou J., Feng Z.: Transient response analysis of onedimensional distributed parameter systems, Int. J. of Solids and structures, Vol. 36, pp. 2807-2824, 1999.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e3caf61-3bf5-45b2-bd67-615297c6cb79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.