PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biodegradation of diesel oil in soil and its enhancement by application of bioventing and amendment with brewery waste effluents as biostimulation-bioaugmentation agents

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this study is to investigate and evaluate the effects of natural bioattenuation, bioventing, and brewery waste effluents amendment as biostimulation-bioaugmentation agent on biodegradation of diesel oil in unsaturated soil. A microcosm system was constructed consisting of five plastic buckets containing 1 kg of soil, artificially contaminated or spiked with 10% w/w of diesel oil. Biodegradation was monitored over 28 days by determining the total petroleum hydrocarbon content of the soil and total hydrocarbon degrading bacteria. The results showed that combination of brewery waste effluents amendment and bioventing technique was the most effective, reaching up to 91.5% of diesel removal from contaminated soil; with the brewery waste effluents amendment (biostimulation-bioaugmentation), the percentage of diesel oil removal was 78.7%; with bioventing, diesel oil percentage degradation was 61.7% and the natural bioattenuation technique resulted in diesel oil removal percentage be not higher than 40%. Also, the total hydrocarbon-degrading bacteria (THDB) count in all the treatments increased throughout the remediation period. The highest bacterial growth was observed for combined brewery waste effluents amendment with bioventing treatment strategy. A first-order kinetic model was fitted to the biodegradation data to evaluate the biodegradation rate and the corresponding half-life time was estimated. The model revealed that diesel oil contaminated-soil microcosms under combined brewery waste effluents amendment with bioventing treatment strategy had higher biodegradation rate constants, k as well as lower half-life times, t1/2 than other remediation systems. This study showed that the microbial consortium, organic solids, nitrogen and phosphorus present in the brewery waste effluents proved to be efficient as potential biostimulation-bioaugmentation agents for bioremediation processes of soils contaminated with diesel oil.
Rocznik
Strony
82--91
Opis fizyczny
Bibliogr. 47 poz., tab., rys.
Twórcy
autor
  • Ladoke Akintola University of Technology, Ogbomoso, Nigeria
  • Ladoke Akintola University of Technology, Ogbomoso, Nigeria
Bibliografia
  • 1. Abioye P.O, Abdul Aziz A. and Agamuthu P. 2009. Enhanced biodegradation of used engine oil in soil amended with organic wastes. Water Air Soil Poll., 173–179.
  • 2. Adesodun J.K. and Mbagwu J.S.C. 2008. Biodegradation of waste-lubricating petroleum oil in a tropical alfisol as mediated by animal droppings. Bioresource Technol., 99 (13), 5659–5665.
  • 3. Agarry S.E., Owabor C.N., Yusuf R.O. 2012. Enhanced bioremediation of soil artificially contaminated with kerosene: Optimization of biostimulation agents through statistical experimental design. J. Pet. Environ. Biotechnol. 3, 120.
  • 4. Agarry S.E., Aremu M.O., Aworanti O.A. 2013a. Kinetic modelling and half-life study on bioremediation of soil co-contaminated with lubricating motor oil and lead using different bioremediation strategies. Soil and Sediment Contam. An Int. J. 22 (7), 800–816.
  • 5. Agarry S.E. and Jimoda L.A. 2013b. Application of Carbon-Nitrogen Supplementation from Plant and Animal Sources in In-situ Soil Bioremediation of Diesel Oil: Experimental Analysis and Kinetic Modelling.
  • 6. Agarry S.E., Owabor C.N. and Yusuf R.O. 2010. Bioremediation of soil artificially contaminated with petroleum hydrocarbon mixtures: Evaluation of the use of animal manure and chemical fertilizer. Bioremediation J., 14 (4), 189–195.
  • 7. Akinde S.B. and Obire O. 2008. Aerobic heterotrophic bacteria and petroleum-utilizing bacteria from cow dung and poultry manure. World J. Microbiol. Biotechnol., 24, 1999–2002.
  • 8. Amanchukwu C.C., Obafemi A., Okpokwasili G.C. 1989. Hydrocarbon degradation and utilization by a palmwine yeast isolate. FEMS Microbiol. Lett. 57, 51–54.
  • 9. APHA 1985. Standard Methods for Examination of water and wastewater. American Public Health Association Washington DC.
  • 10. April T.M., Foght J.M. and Currah R.S. 2000. Hydrocarbon degrading filamentous fungi isolated from flare pit soils in northern and western Canada. Canadian J. Microbiol., 46 (1), 38–49.
  • 11. Aronson D., Boethling R., Howard P., Stiteler W. 2006. Estimating biodegradation half-lives for use in chemical screening. Chemosphere 63, 1953–1960.
  • 12. Bento F.M., Camargo F.A., Okeke B., Frankenberger Jr. T.W. 2003. Bioremediation of soil contaminated by diesel oil. Braz. J. Microbiol. 34 (Suppl. 1), 65–68.
  • 13. Bremner J.M., Mulvaney C.S. 1982. Total nitrogen determination. In Method of Soil Analysis, vol. 2, ed. A.L. Page, R.H. Miller, and D.R. Keeney, pp. 595. Madison, WI: American Society of Agronomy.
  • 14. Brook T.R., Stiver W.H., and Zytner R.G. 2001. Biodegradation of diesel fuel in soil under various nitrogen addition regimes. Soil Sediment Contamination 10, 539–553.
  • 15. Das N. and Chandran P. 2011. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol. Res. Int., 1–13.
  • 16. Dimitrov S., Pavlov T., Nedelcheva D., Reuschenbach P., Silvani M. et al. 2007. A kinetic model for predicting biodegradation. SAR QSAR Environ. Res. 18, 443–457.
  • 17. Gallego J.R., Loredo J., Llamas J.F., Vazquez F. and Sanchez J. 2001. Bioremediation of diesel-contaminated soils: evaluation of potential in situ techniques by study of bacterial degradation. Biodegradation, 12, 325–335.
  • 18. Greene E.A., Kay J.G., Jaber K., Stehmeier L.G., Voordouw G. 2000. Composition of soil microbial communities enriched on a mixture of aromatic hydrocarbons. Appl. Environ. Microbiol. 66, 5282–5289.
  • 19. Inyang U.E., Bassey E.N., and Inyang J.D. 2012. Characterization of brewery effluent fluid. J. Eng. Appl. Sci. 4, 67–77.
  • 20. Kirsten S., Hung L., Zytner R.G. 2005. Optimization of nitrogen for bioventing of gasoline contaminated soil. J. Environ. Eng. Sci. 4 (1), 29.
  • 21. Krieg N.R., Holt J.G., Sneath P.H.A., Stanley J. T. and Williams S.T. 1994. Bergey’s Manual of Determinative Bacteriology, 9th ed., Williams and Wilkins, Baltimore.
  • 22. Lee T.H., Byun I.G., Kim Y.O., Hwang I.S., Park T.J. 2006. Monitoring biodegradation of diesel fuel in bioventing processes using in situ respiration rate. Water Science & Technology, 53 (4/5), 263
  • 23. Mao L. and Yue Q. 2010. Remediation of diesel-contaminated soil by bioventing and composting technology. International Conference on Challenges in Environmental Science and Computer Engineering, pp. 3–6.
  • 24. Margesin R., Hammerle M. and Tscherko D. 2007. Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: Effects of hydrocarbon concentration, fertilizers, and incubation time. Microbiol Ecol., 53, 259–269.
  • 25. Matthies M., Witt J., Klasmeier J. 2008. Determination of soil biodegradation half lives from simulation testing under aerobic laboratory conditions: a kinetic model approach. Environ. Poll. 156, 99–105.
  • 26. McLean E.O. 1982. Soil pH and lime requirement in methods in soil analysis: Chemical and microbiological properties. Part II, ed. C.A. Black. Madison, WI: American Society of Agronomy.
  • 27. Molina-Barahona L., Rodriguez-Vázquez R., Hernández-Velasco M., Vega-Jarquin C., Zapata- Pérez O., Mendoza-Cantú A. and Albores A. 2004. Diesel removal from contaminated soils by biostimulation and supplementation with crop residues. Appl. Soil Ecol., 27, 165–175.
  • 28. Møller J., Winther P., Lund B., Kirkebjerg K., and Westermann P. 1996. Bioventing of diesel oil-contaminated soil: Comparison of degradation rates in soil based on actual oil concentration and on respirometric data. J. Ind. Microbiol. 16 (2), 110–116.
  • 29. Morales M., Maria A., Munoz S., Claudia Quintero P., Silvia L. 2013. Evaluation of natural attenuation, bioventing, bioaugmentation and bioaugmentation-bioventing techniques, for the biodegradation of diesel in a sandy soil, through column experiments. Gestion y Ambiente, 16(2), 83–94.
  • 30. Nelson D.W., Sommers L.E. 1982. Determination of organic carbon. [In:] Method of Soil Analysis, vol. 2, ed. A.L. Page, R.H. Miller, and D.R. Keeney, 539. Madison, WI: American Society of Agronomy.
  • 31. Okiemen C.O. and Okiemen F.E. 2005. Bioremediation of crude oil polluted soil. Effect of poutry droppings and natural rubber processing sludge application on biodegradation of petroleum hydrocarbon. Environ. Sci. 1(1), 1–8.
  • 32. Olsen S.R., Sommers L.E. 1982. Determination of available phosphorus. [In:] Method of Soil Analysis, vol. 2, ed. A.L. Page, R H. Miller, and D.R. Keeney, 403. Madison, WI: American Society of Agronomy.
  • 33. Onwurah I.N.E., Ogugua V.N., Onyike N.B., Ochonogor A.E. and Otitoju O.F. 2007. Crude oil spills in the environment, effects and some innovative clean-up biotechnologies. Int. J. Environ. Res., 1, 307–320.
  • 34. Osuji L.C., Egbuson E.J.G. and Ojinnaka C.M. 2005. Chemical reclamation of crude-oil-inundated soils from Niger Delta. Nigeria. Chem. Ecol., 21(1), 1–10.
  • 35. Richard J.Y. and Vogel T.M. 1999. Characterization of a soil bacterial consortium capable of degrading diesel fuel. Int. Biodeter. Biodegrad., 44, 93–100.
  • 36. Seklemova E., Pavlova A. and Kovacheva K. 2001. Biostimulation based bioremediation of diesel fuel: field demonstration. Biodegradation, 12, 311–316.
  • 37. Singh D. and Fulekar M.H. 2009. Bioremediation of benzene, toluene and o-xylene by cow dung microbial consortium. JABs 14, 788–795.
  • 38. Sinkkonen S., Paasivirta J. 2000. Degradation half-life times of PCDDs, PCDF sand PCBs for environmental fate modeling. Chemosphere 40, 943–949.
  • 39. Thomé A., Reginatto C., Cecchin I. and Colla L. 2014. Bioventing in a Residual Clayey Soil Contaminated with a Blend of Biodiesel and Diesel Oil. J. Environ. Eng., 10.1061/(ASCE)EE 1943- 7870.0000863, 06014005
  • 40. Tsai T.T., Kao C.M., Surampalli R.Y., Chien H.Y. 2009. Enhanced Bioremediation of Fuel-Oil Contaminated Soils: Laboratory Feasibility Study. J. Environ. Eng. 135, 845–853.
  • 41. Wang J.L., L.P. Han, H.C. Shi, and Y. Qian 2001. Biodegradation of quinoline by gel immobilized Burkholderia sp. Chemosphere 44, 1041–1046.
  • 42. Wolicka D., Suszek A., Borkowski A. and Bielecka A. 2009. Application of aerobic microorganisms in bioremediation in situ of soil contaminated by petroleum products. Bioresour. Technol., 100, 3221–3227.
  • 43. Yakubu M.B. 2007. Biodegradation of Lagoma crude oil using pig dung. Afri. J. Biotechnol., 6, 2821–2825.
  • 44. Yeung P.Y., Johnson R.L., Xu J.G. 1997. Biodegradation of petroleum hydrocarbons in soil as affected by heating and forced aeration. J. Environ. Quality 26, 1511–1576.
  • 45. Zahed M.A., Abdul Aziz H., Isa M.H., Mohajeri L., Mohajeri S., Kutty S.R.M. 2011. Kinetic modeling and half life study on bioremediation of crude oil dispersed by Corexit 9500. J. Hazard Mater. 185, 1027–1031.
  • 46. Zhang S., Wang X., Zhu R., Li H., Wang P., Yang J., Lin K., Gu J., and Liu Y. 2014. Aerobic biodegradation of trichloroethylene by a bacterial community that uses hydrogen peroxide as sole oxygen source. http://www.paper.edu.cn/download/downpaper/201406-149.
  • 47. Zhu X, Venosa A.D., Suidan M.T., Lee K. 2001. Guidelines for the Bioremediation of Marine Shorelines and Freshwaters Waterlands. US Environmental Protection Agency Office of Research and Development National Risk Management Research Laboratory.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e2f2293-55b2-438b-8f9a-ef5f27d70caa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.