PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rough sets in identification of cellular automata for medical image processing

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper a method is proposed which enables identification of cellular automata (CA) that extract low-level features in medical images. The CA identification problem includes determination of neighbourhood and transition rule on the basis of training images. The proposed solution uses data mining techniques based on rough sets theory. Neighbourhood is detected by reducts calculations and rule-learning algorithms are applied to induce transition rules for CA. Experiments were performed to explore the possibility of CA identification for boundary detection, convex hull transformation and skeletonization of binary images. The experimental results show that the proposed approach allows finding CA rules that are useful for extraction of specific features in microscopic images of blood specimens.
Rocznik
Tom
Strony
161--168
Opis fizyczny
Bibliogr. 21 poz. rys.
Twórcy
autor
  • Institute of Computer Science, University of Silesia, Będzińska 39, 41-200 Sosnowiec, Poland
Bibliografia
  • [1] ADAMATZKY A., Automatic programming of cellular automata: identification approach. Kybernetes: The Int. J. of Systems & Cybernetics, 1997, Vol. 26, No. 2, pp. 126-135.
  • [2] ADAMATZKY A., Identification of Cellular Automata, Taylor & Francis, London, 1994.
  • [3] ALARCÓN T., BYRNE H. M., MAINI P. K., A cellular automaton model for tumour growth in inhomogeneous environment, Journal of Theoretical Biology, 2003, 225(2), pp. 257-274.
  • [4] ANGHELESCU P., IONITA S., SOFRON E., Encryption Technique with Programmable Cellular Automata (ETPCA). Journal of Cellular Automata, 2010, 5(1-2), pp. 79-105.
  • [5] BARIGOU F., ATMANI B., BELDJILALI B., Using a Cellular Automaton to Extract Medical Information from Clinical Reports. Journal of Information Processing Systems, 2012, 8(1), pp. 67-84.
  • [6] BAZAN J. G., SZCZUKA M., The rough set exploration system. In: J.F. Peters and A. Skowron (Eds.): Transactions on Rough Sets III, LNCS 3400, Springer, Heidelberg, 2005, pp. 37-56.
  • [7] BILLINGS S., YANG Y., Identification of probabilistic cellular automata, IEEE Trans. on Systems Man and Cybernetics, Part B: Cybernetics, 2003, Vol. 33, No. 2, pp. 225-236.
  • [8] CHAVOYA A., DUTHEN Y., Using a genetic algorithm to evolve cellular automata for 2D/3D computational development. In: Genetic and Evolutionary Computation Conf., 2006, pp. 231-232.
  • [9] CRAIU R. V., LEE T. C. M., Pattern generation using likelihood inference for cellular automata, IEEE Transactions on Image Processing, 2006, 15 (7), pp. 1718-1727.
  • [10] GHOSH P., ANTANI S. K., LONG L. R., THOMA G. R., Unsupervised Grow-Cut: Cellular Automata-based Medical Image Segmentation. First IEEE International Conference on Healthcare Informatics, Imaging and Systems Biology, 2011.
  • [11] GRZYMALA-BUSSE, J. W., LERS-a system for learning from examples based on rough sets. In: Intelligent decision support. Springer Netherlands, 1992, pp. 3-18.
  • [12] MAEDA K. I., SAKAMA C.: Identifying cellular automata rules. Journal of Cellular Automata, 2007, Vol. 2, No. 1, pp. 1-20.
  • [13] PEER M. A., QADIR F., KHAN K. A., Investigations of cellular automata game of life rules for noise filtering and edge detection. International Journal of Information Engineering and Electronic Business, 2012, 4(2), pp. 22-28.
  • [14] PRIEGO B., SOUTO D., BELLAS F., DURO R. J., Hyperspectral Image Segmentation through Evolved Cellular Automata, Pattern Recognition Letters, 2013, Vol. 34, No. 14, pp. 1648-1658.
  • [15] RICHARDS F. C., MEYER T. P., PACKARD N. H., Extracting cellular automaton rules directly from experimental data, Phys. D, 1990, Vol. 45, No. 1-3, pp. 189–202.
  • [16] ROSIN P., Training cellular automata for image processing, IEEE Trans. on Image Pro-cessing, 2006, Vol. 15, No. 7, pp. 2076-2087.
  • [17] SLATNIA S., BATOUCHE M., MELKEMI K. E., Evolutionary cellular automata based-approach for edge detection. In: Applications of Fuzzy Sets Theory, Springer, Berlin Heidelberg, 2007, pp. 404-411.
  • [18] STRAATMAN B., WHITE R., ENGELEN G., Towards an automatic calibration procedure for constrained cellular automata, Comput., Environ. Urban Syst., 2004, 28 (1-2), pp. 149-170.
  • [19] SUN X., ROSIN P. L., MARTIN R. R.: Fast rule identification and neighborhood selection for cellular automata. IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, 2011, 41 (3), pp. 749-760.
  • [20] YANG Y., BILLINGS S., Extracting Boolean rules from CA patterns, IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, 2000, 30 (4), pp. 573-580.
  • [21] ZHAO Y., BILLINGS S., The identification of cellular automata, Journal of Cellular Automata, 2007, Vol. 2, No. 1, pp. 47-65.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e271df5-f264-47c9-9017-d6808ff2f1b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.