PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Graphene as a material for solar cells applications

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Graphene is a two-dimensional material with honeycomb structure. Its unique mechanical, physical electrical and optical properties makes it an important industrially and economically material in the coming years. One of the application areas for graphene is the photovoltaic industry. Studies have shown that doped graphene can change one absorbed photon of a few electrons, which in practice means an increase in efficiency of solar panels. In addition, graphene has a low coefficient of light absorption 2.3% which indicates that is an almost completely transparent material. In fact, it means that solar cells based on graphene can significantly expand the absorbed spectrum wavelengths of electromagnetic radiation. Graphene additionally is a material with a very high tensile strength so it can be successfully used on the silicon, flexible and organic substrates as well. So far, significant effort has been devoted to using graphene for improving the overall performance of photovoltaic devices. It has been reported that graphene can play diverse, but positive roles such as an electrode, an active layer, an interfacial layer and an electron acceptor in photovoltaic cells. Research on solar cells containing in its structure graphene however, are still at laboratory scale. This is due to both lack the ability to produce large-sized graphene and reproducibility of its parameters.
Rocznik
Strony
67--81
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
  • Lodz University of Technology, Institute of Materials Science and Engineering, 90-924 Lodz, Stefanowskiego Street 1/15, Poland
  • Lodz University of Technology, Institute of Materials Science and Engineering, 90-924 Lodz, Stefanowskiego Street 1/15, Poland
  • Lodz University of Technology, Institute of Materials Science and Engineering, 90-924 Lodz, Stefanowskiego Street 1/15, Poland
Bibliografia
  • 1. Boehm H.P., Setton R., Stumpp E. Nomenclature and terminology of graphite intercalation compounds, Pure and Applied Chemistry 66 (1994), 1893-1901.
  • 2. Centrum grafenu i innowacyjnych technologii; Biuletyn Politechniki Warszawskiej; 2014.
  • 3. Scientific American nr 298, Carbon Wonderland, 2008, 90-97.
  • 4. Science nr 324, Graphene: Status and prospects (2009), 1530-1534.
  • 5. http://nobelprize.org/nobel_prizes/physics/laureates/2010/sciback_phy_10_2.pdf.
  • 6. Novoselov K.S. et al., Two-dimensional atomic crystals, Proc. Natl Acad. Sci., USA.
  • 7. Ghavanini F.A., Theander H., Graphene feasibility and foresight study for transport infrastructures; Chalmers Industriteknik 2015.
  • 8. Kumar N.A., Dar M.A., Gul R. Jong-Beom Baek, Graphene and molybdenum disulfide hybrids: synthesis and applications; Materials Today 18(5) (2015).
  • 9. Soldano C., Mahmood A., Dujardin E., Production, properties and potential of grapheme; Carbon 48 (2010), 2127-2150.
  • 10. Frank IW, Tanenbum DM, Van der Zande AM, McEuen P., Mechanical properties of suspensed grapheme sheets, In 51st International conference on electron, ion, and phton beam technology and nanofabrication, AVS Amer Inst Physics 207, 2558-2561.
  • 11. Bonaccorso F., Sun Z., Hasan T., Ferrari A.C., Nature photonics, 2010.
  • 12. Santanu Das, Pitchaimuthu Sudhagar and Yong Soo Kang, Wonbong Choia; Graphene synthesis and application for solar cells; J. Mater. Res. 2013.
  • 13. Stankovich S., Dikin D., Dommett G., Kohlhaas K., Zimney E, Stach E., Piner R., SonBinh T. Nguyen and Ruoff R., Graphene-based composite materials; Nature 442 (2006), 282-286.
  • 14. Bonaccorso F., Lombardo A., Hasan T., Sun Z., Colombo L., Ferrari A.C., Production and processing of graphene and 2d crystals; Materials Today 15(12) (2012), 564-589.
  • 15. Choon-Ming S., Siang-Paiao Chai, Abdul Rahman Mohamed; Mechanisms of graphene growth by chemical vapour deposition on transition metals, Carbon 70, 1-21 (2014).
  • 16. Mattevi C., Kim H., Chhowalla M., A review of chemical vapour deposition of grapheme on copper, , J. Mater. Chem., 21, 3324-3334, (2011).
  • 17. Kula P., Pietrasik R., Dybowski K., Atraszkiewicz R., Kaczmarek L., Kazimierski D., Niedzielski P., Modrzyk W., The growth of a polycrystalline graphene from a liquid phase, Nanotech 1 (2013), 210 - 212.
  • 18. Chung K., Lee C.H,. Yi G.C., Transferable GaN Layers Grown on ZnO-Coated Graphene Layers for Optoelectronic Devices Science 330 (2010) 655-657.
  • 19. Tetlow H., Posthuma de Boer J. et al; Growth of epitaxial graphene: Theory and experiment, Physics reports, 542 (2014), 195-295.
  • 20. Hasan, T., Solution‐phase exfoliation of graphite for ultrafast photonics, Phys Status Solidi B. 247 (2010) 2953-2957.
  • 21. Liao K.H., Mittal A., Bose S., Leighton C., Mkhoyan K.A., Macosko C.V., Aqueous only route toward graphene from graphite oxide, ACS Nano 5 (2011), 1253-1258.
  • 22. Wang H. J., Robinson J., Li X., Dai., Solvothermal Reduction of Chemically Exfoliated Graphene Sheets, J. Am. Chem. Soc. 131 (2009), 9910-9911.
  • 23. Hiura H., Lee M.V., Tyurnina A.V., Tsukagoshi K., Liquid phase growth of graphene on silicon carbide, Carbon 50 (2012), 5076-5084.
  • 24. Kolodziejczyk L., Kula P., Szymański W., Atraszkiewicz R., Dybowski K., Pietrasik R., Frictional behaviour of polycrystalline graphene grown on liquid metallic matrix, Tribology International 12 (2014), 003.
  • 25. Zhang Y., Zhang L., Zhou C., Review of Chemical Vapor Deposition of Graphene and Related Applications, Acc. Chem. Res. 46 (2013), 2329-2339.
  • 26. Markvart T., Castaner L., Solar Cells: Materials, Manufacture and Operation; Elsevier, Oxford 2005.
  • 27. Jarzębski Z.M., Energia słoneczna, konwersja fotowoltaiczna. Państwowe Wydawnictwo Naukowe, Warszawa 1990.
  • 28. Centurioni E., Summonte C., Optical an open source program for the optical simulation of multilayer systems, 22th EPVSEC, Milano, Italy 2007.
  • 29. Park H, Chang S., Smith M., Gradecak S., Kong J., Interface engineering of grapheme for universal applications as both anode and cathode in organic photovoltaics, Scientific reports 3 (2013), 1581- 2013.
  • 30. Shia E., Lib H., Xua W., Wua S., Weic J., Fang F., Cao A., Improvement of graphene-Si solar cells by embroidering grapheme with a carbon nanotube spider-web; Nano Energy 2015 - article in press.
  • 31. Chandramika Bora, Chandrama Sarkar, Kiron J. Mohan, Swapan Dolui; Polythiophene /graphene composite as a highly efficient platinum-free counter electrode in dye-sensitized solar cells , Electrochimica Acta 03/2015; 157.
  • 32. Yan H., Wang J., Feng B, Duan K, Weng J., Graphene and Ag nanowires co-modified photoanodes for high-efficiency dye-sensitized solar cells, Solar Energy 122 (2015), 966-975.
  • 33. Review of Chemical Vapor Deposition of Graphene and Related Applications, Accounts of Chemical Research; 46(10) (2013) 2329-2339.
  • 34. Qian Zhang, Xiangjian Wan, Fei Xing, Lu Huang, Guankui Long, Ningbo Yi, Wang Ni, Zhibo Liu, Jianguo Tian, Yongsheng Chen: Solution-processable graphene mesh transparent electrodes for organic solar cells. Nano Lett. 6(7) (2013), 478-484.
  • 35. Xu, Y.; Long, G.; Huang, L.; Huang, Y.; Wan, X.; Ma, Y.; Chen, Y. Polymer photovoltaic devices with transparent graphene electrodes produced by spin-casting. Carbon 48 (2010), 3308-3311.
  • 36. Wu, J.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic solar cells with solutionprocessed graphene transparent electrodes. Appl. Phys. Lett., 92 (2008), 263-302.
  • 37. Eda, G.; Lin, Y. Y.; Miller, S.; Chen, C. W.; Su, W. F.; Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl. Phys. Lett., 92 (2008), 233-305.
  • 38. Jung, V. C.; Chen, L. M.; Allen, M. J.; Wassei, J. K.; Nelson, K.; Kaner, R. B.; Yang, Y. Lowtemperature solution processing of graphene-carbon nanotube hybrid materials for highperformance transparent conductors. Nano Lett., 9 (2009), 1949-1955.
  • 39. Shao-Sian Li,Kun-Hua Tu,Chih-Cheng Lin,Chun-Wei Chen,and Manish Chhowalla; Solutionprocessable grapheme oxide as an efficient hole transport layer in polymer solar cells; American Chemical Society 4 (6), 3169-3174
  • 40. Jacob Tse-Wei Wang, James M. Ball, Eva M. Barea, Antonio Abate, Jack A. Alexander-Webber, Jian Huang, Michael Saliba, Ivan Mora-Sero, Juan Bisquert, Henry J. Snaith, and Robin J. Nicholas; Low-Temperature Processed Electron Collection Layers of Graphene / TiO2 Nanocomposites in Thin Film Perovskite Solar Cells; Nano Letters, 14 (2014), 724−730.
  • 41. Shemella P., Nayak S.K., Electronic structure and band-gap modulation of graphene via substrate surface chemistry. Appl. Phys. Lett. 94, (2009), 032-101
  • 42. Chang D.W., Choi H.J., Filer A., Baek J.B., Journal of Materials Chemistry A, 31, 2014.
  • 43. Bernardi M., Palummo M., Grossman J.C., Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials, Nano letters, 2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e267f28-6221-4f0d-bdee-2fd9b9aabd9c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.