PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Buckling resistance assessment of steel I-section beam-columns not susceptible to LT-buckling

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The authors focused on buckling resistance assessment of steel-I-section perfect beam-columns of the cross-section class 1 and 2, not susceptible to LT-buckling and subjected to compression and one directional bending about the section principal axes y–y or z–z. These assumptions lead to the case of elements considered as only sensitive to the flexural failure including second order in-plane bending and compression. The stability behaviour of elements subjected to different bending configurations and different static schemes was investigated through comprehensive numerical study with use of the finite element method. Geometrically and materially nonlinear analyses GMNA in case of perfect beam-columns and GMNIA fo the imperfect ones were carried out in reference to shell and beam element models. Static equilibrium paths accounting for pre- and post-limit behaviour were determined with use of the incremental-iterative algorithm taking into consideration displacement-control parameters. An analytical formulation for a quick verification of the perfect I-section beam-column resistance is proposed. Finally, the global effect of imperfections is also investigated using GMNIA. The verification method developed for perfect elements is extrapolated for imperfect beam-columns. The good agreement of the proposed analytical formulation is shown through an extensive comparison with more than 3500 results of finite element numerical simulations conducted with use of ABAQUS/Standard program.
Rocznik
Strony
205--221
Opis fizyczny
Bibliogr. 39 poz., wykr.
Twórcy
  • Division of Metal Structures, Faculty of Civil Engineering, Warsaw University of Technology, al. Armii Ludowej 16, 00-637 Warsaw, Poland
autor
  • Division of Metal Structures, Faculty of Civil Engineering, Warsaw University of Technology, al. Armii Ludowej 16, 00-637 Warsaw, Poland
  • Department of Strength of Materials and Theory of Elasticity and Plasticity, Faculty of Civil Engineering, Warsaw University of Technology, al. Armii Ludowej 16, 00-637 Warsaw, Poland
autor
  • Division of Metal Structures, Faculty of Civil Engineering, Warsaw University of Technology, al. Armii Ludowej 16, 00-637 Warsaw, Poland
Bibliografia
  • [1] W.F. Chen, T. Atsuta, Theory of beam-columns, In-Plane Behavior and Design, vol. 1, McGraw-Hill, New York, 1976.
  • [2] N.S. Trahair, M.A. Bradford, D.A. Nethercot, L. Gardner, The Behaviour and Design of Steel Structures to EC3, 4th ed., Taylor & Francis, London and New York, 2008.
  • [3] L. Simoes da Silva, R. Simoes, H. Gervasio, Design of Steel Structures, Eurocode 3: Design of Steel Structures, Part 1-1: General Rules and Rules for Buildings, ECCS Eurocode Design Manual, Ernst & Sohn, Berlin, 2010.
  • [4] R. Szczerba, M. Gajewski, M.A. Giżejowski, Numerical study of resistance interaction curves of steel I-section beam- columns, in: E. Piotrowska (Ed.), Concrete and Steel Structures, Publishing House of University of Technology and Life Sciences, Bydgoszcz, 2015 277–284 (in Polish).
  • [5] A. Boissonnade, J.-P. Jaspart, J.-P. Muzeau, M. Villette, Improvement of the interaction formulae for beam columns in Eurocode 3, Computers and Structures 80 (2002) 2375–2385.
  • [6] R. Goncalves, D. Camotim, On the application of beam-column interaction formulae to steel members with arbitrary loading and support conditions, Journal of Constructional Steel Research 60 (2004) 433–450.
  • [7] EN. 1993-1-1, Eurocode 3: Design of Steel, Structures. Part 1-1. General Rules and Rules for Buildings, CEN, Brussels, 2005.
  • [8] A. Boissonnade, J.-P. Jaspart, J.-P. Muzeau, M. Villette, New interaction formulae for beam-columns in Eurocode 3: the French–Belgian approach, Journal of Constructional Steel Research 60 (2004) 421–431.
  • [9] R. Greiner, J. Lindner, Interaction formulae for members subjected to bending and axial compression in Eurocode 3 – the Method 2 approach, Journal of Constructional Steel Research 62 (2006) 757–770.
  • [10] A.M. Barszcz, M.A. Gizejowski, An equivalent stiffness approach for modelling the behaviour of compression members according to Eurocode 3, Journal of Constructional Steel Research 63 (1) (2007) 55–70.
  • [11] M. Kucukler, L. Gardner, L. Macorini, A stiffness reduction method for the in-plane design of structural steel elements, Engineering Structures 73 (2014) 72–84.
  • [12] M. Kucukler, L. Gardner, L. Macorini, Lateral–torsional buckling assessment of steel beams through a stiffness reduction method, Journal of Constructional Steel Research 109 (2015) 87–100.
  • [13] E. Chladny, M. Stujberova, Frames with unique global and local imperfection in the shape of the elastic buckling mode, Stahlbau, Part 1 82 (8) (2013) 609–617, Part 2 – 82 (9) (2013) 684–695.
  • [14] A. Aguero, L. Pallares, F.J. Pallares, Equivalent geometric imperfection definition in steel structures sensitive to lateral torsional buckling due to bending moment, Engineering Structures 96 (2015) 41–55.
  • [15] A. Aguero, L. Pallares, F.J. Pallares, Equivalent geometric imperfection definition in steel structures sensitive to flexural and/or torsional buckling due to compression, Engineering Structures 96 (2015) 160–177.
  • [16] F. Bijlaard, M. Feldmann, J. Naumes, G. Sedlacek, The ‘‘general method’’ for assessing the out-of-plane stability of structural members and frames and the comparison with alternative rules in EN 1993 – Eurocode 3 – Part 1-1, Steel Construction 3 (1) (2010) 19–33.
  • [17] F. Papp, A. Rubert, J. Szalai, DIN EN 1993-1-1 based integrated stability analysis of 2D/3D steel structures, Stahlbau, Part 1 83 (1) (2014) 1–15, Part 2 – 83 (2) (2014) 122–141; Part 3 – 83 (5) (2014) 325–342 (in German).
  • [18] A. Kozłowski, R. Szczerba, Design resistance of beam-column according to general method, in: Proceedings of the 7th European Conference on Steel, Composite Structures EUROSTEEL, 2014.
  • [19] TankovaF T., L. Simões da Silva, L. Marques, A. Andrade, Proposal of an Ayrton–Perry design methodology for the verification of flexural and lateral–torsional buckling of prismatic beam-columns, in: E-Proc. 8th International Conference on Advances in Steel Structures (CD), Lisbon, Portugal, July 22–24, (2015) 1–10.
  • [20] M. Gizejowski, Z. Stachura, Resistance partial factors for stability design of steel members according to Eurocodes, in: E-Proc. 8th International Conference on Advances in Steel Structures (CD), Lisbon, Portugal, July 22–24, (2015) 1–20.
  • [21] J. Szalai, F. Papp, On the theoretical background of the generalization of Ayrton–Perry type resistance formulas, Journal of Constructional Steel Research 66 (2010) 670–679.
  • [22] F. Papp, Buckling assessment of steel members through overall imperfection method, Engineering Structures 106 (2016) 124–136.
  • [23] M.A. Giżejowski, R. Szczerba, M. Gajewski, Z. Stachura, Beam-column resistance interaction criteria for in-plane bending and compression, Procedia Engineering 111 (2015) 254–261.
  • [24] R. Szczerba, M. Gajewski, M.A. Giżejowski, Analysis of steel I-beam-columns cross-section resistance with use of finite element method, Journal of Civil Engineering, Environment and Architecture JCEEA-62-03-t2 (2015) 425–438.
  • [25] ABAQUS, Theory Manual, Version 6.1, Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, 2000.
  • [26] ABAQUS/Standard User's Manual, Version, 6.1, Hibbitt, Karlsson & Sorensen Inc., Pawtucket, 2000.
  • [27] A.S. Khan, S. Huang, Continuum Theory of Plasticity, John Wiley & Sons, Inc., New York, 1995.
  • [28] J. Lubliner, Plasticity Theory, Macmillan Publishing Company, New York, 1990.
  • [29] S. Jemioło, M. Gajewski, Hyperelasto-Plasticity, Warsaw University of Technology Publishing House, Warsaw, 2014 (in Polish).
  • [30] J. Bonet, R.D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd ed., Cambridge University Press, Cambridge, 2008.
  • [31] C. Ajdukiewicz, M. Gajewski, S. Jemioło, Numerical simulation and experimental verification of tensile test taking account for the theory of large elasto-plastic deformations, in: S. Jemioło (Ed.), Elasticity and Hyperelasticity. Modeling and Applications, Warsaw University of Technology Publishing House, Warsaw, 2012 167–178 (in Polish).
  • [32] M. Gajewski, Application of the theory of hyperelastic-plastic materials in the test of static stretching of the rod with circular cross section, Logistyka 6 (2011) 1041–1048.
  • [33] M.J. Lewandowski, M. Gajewski, M.A. Giżejowski, Numerical analysis of influence of intermediate stiffeners setting on the stability behaviour of thin-walled steel tank shell, Thin- Walled Structures 90 (2015) 119–127.
  • [34] R. Kindmann, M. Kraus, Steel Structures – Design using FEM, Ernst & Sohn, Berlin, 2011.
  • [35] E. Ellobody, R. Feng, B. Young, Finite Element Analysis and Design of Metal Structures, Butterworth-Heinemann, Waltham, 2014.
  • [36] N. Boissonnade, H. Somja, Influence of imperfections in FEM modeling of lateral torsional buckling, in: Proc. Annual Stability Conference: Structural Stability Research Council, 2012.
  • [37] Z. Kala, Sensitivity and reliability analyses of lateral– torsional buckling resistance of steel beams, Archives of Civil and Mechanical Engineering 15 (2015) 1098–1107.
  • [38] P. Kaim, Spatial buckling behaviour of steel members under bending and axial compression, (Ph.D. thesis), Technischen Universität Graz, 2004, pp. 1–257.
  • [39] D. Schillinger, Stochastic FEM based stability analysis of I-sections with random imperfections, (Diploma thesis), Stuttgart University, 2008, pp. 1–93.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e21666b-4fd0-4803-94c1-2c7268759130
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.