Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The present work aims to investigate the effect of many infill patterns (rectilinear, line, grid, triangles, cubic, concentric, honeycomb, 3D honeycomb) and the infill density on the mechanical tensile strength of an Acrylonitrile Butadiene Styrene (ABS) test specimen manufactured numerically by FDM. Design/methodology/approach: Computer-Aided Design (CAD) software has been used to model the geometry and the mesostructure of the test specimens in a fully automatic manner from a G-code file by using a script. Then, a Numerical Design of Experiments (NDoE) has been carried out by using Taguchi method and the Analysis of Variance (ANOVA). The tensile behaviour of these numerical test specimens has been studied by the Finite Element Analysis (FEA). Findings: The FEA results showed that a maximal Ultimate Tensile Strength (UTS) was reached by using the ‘concentric’ infill pattern combined with an infill density of 30%. The results also show that the infill pattern and the infill density are significant factors. Research limitations/implications: The low infill densities of 20% and 30% that have already been used in many previous studies, we have also applied it in order to reduce the time of the simulations. Indeed, with high infill density, the simulations take a very excessive time. In an ongoing study, we predicted higher percentages. Practical implications: This study provided an important modelling tool for the design and manufacture of functional parts and helps the FDM practitioners and engineers to manufacture strong and lightweight FDM parts by choosing the optimal process parameters. Originality/value: This study elucidated the effect of various infill patterns on the tensile properties of the test specimens and applied for the first time a NDoE using numerical test specimens created by the mesostructured approach, which considerably minimized the cost of the experiments while obtaining an error of 6.8% between the numerical and the experimental values of the UTS.
Wydawca
Rocznik
Tom
Strony
66--77
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
- National School of Electricity and Mechanics, Hassan II University of Casablanca, B.P 8118 Oasis, Casablanca, Morocco
autor
- Casablanca Higher School of Technology, Hassan II University of Casablanca, B.P 8012 Oasis, Casablanca, Morocco
autor
- National School of Electricity and Mechanics, Hassan II University of Casablanca, B.P 8118 Oasis, Casablanca, Morocco
Bibliografia
- [1] J. Taczała, W. Czepułkowska, B. Konieczny, J. So-kołowski, M. Kozakiewicz, P. Szymor, Comparison of 3D printing MJP and FDM technology in dentistry, Archives of Materials Science and Engineering 101/1 (2020) 32-40. DOI: https://doi.org/10.5604/01.3001.0013.9504
- [2] D.K. Yadav, R. Srivastava, S. Dev, Design and fabrication of ABS part by FDM for automobile application, Materials Today: Proceedings 26 (2020) 2089-2093. DOI: https://doi.org/10.1016/j.matpr.2020.02.451
- [3] T. Sathies, P. Senthil, M.S. Anoop, A review on advancements in applications of fused deposition modelling process, Rapid Prototyping Journal 26/4 (2020) 669-687. DOI: https://doi.org/10.1108/RPJ-08- 2018-0199
- [4] O.A. Mohamed, S.H. Masood, J.L. Bhowmik, Optimization of fused deposition modeling process parameters for dimensional accuracy using I-optimality criterion, Measurement 81 (2016) 174-196. DOI: https://doi.org/10.1016/j.measurement.2015.12.011
- [5] J.M. Chacon, M.A. Caminero, E. Garcla-Plaza, P.J. Nunez, Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection, Materials and Design 124 (2017) 143-157. DOI: https://doi.org/10.1016/j.matdes.2017.03.065
- [6] M. Samykano, S.K. Selvamani, K. Kadirgama, W.K. Ngui, G. Kanagaraj, K. Sudhakar, Mechanical property of FDM printed ABS: influence of printing parameters, The International Journal of Advanced Manufacturing Technology 102/9 (2019) 2779-2796. DOI: https://doi.org/10.1007/s00170-019-03313-0
- [7] V.H. Nguyen, T.N. Huynh, T.P. Nguyen, T.T. Tran, Single and Multi-objective Optimization of Processing Parameters for Fused Deposition Modeling in 3D Printing Technology, International Journal of Automotive and Mechanical Engineering 17/1 (2020) 7542-7551. DOI: https://doi.org/10.15282/ijame.17.1.2020.03.0558
- [8] M. Fernandez-Vicente, W. Calle, S. Ferrandiz, A. Conejero, Effect of infill parameters on tensile mechanical behavior in desktop 3D printing, 3D Printing and Additive Manufacturing 3/3 (2016) 183- 192. DOI: https://doi.org/10.1089/3dp.2015.0036
- [9] K.L. Alvarez C, R.F. Lagos C, M. Aizpun, Investigating the influence of infill percentage on the mechanical properties of fused deposition modelled ABS parts, Ingenieria e Investigacion 36/3 (2016) 110-116. DOI: https://doi.org/10.15446/ing.investig.v36n3.56610
- [10] A. Qattawi, B. Alrawi, A. Guzman, Experimental optimization of fused deposition modelling processing parameters: a design-for-manufacturing approach, Procedia Manufacturing 10 (2017) 791-803. DOI: https://doi.org/10.1016/j.promfg.2017.07.079
- [11] X. Zhou, S.-J. Hsieh, C.-C. Ting, Modelling and estimation of tensile behaviour of polylactic acid parts manufactured by fused deposition modelling using finite element analysis and knowledge-based library, Virtual and Physical Prototyping 13/3 (2018) 177-190. DOI: https://doi.org/10.1080/17452759.2018.1442681
- [12] C. Lubombo, M.A. Huneault, Effect of infill patterns on the mechanical performance of lightweight 3D-printed cellular PLA parts, Materials Today: Communications 17 (2018) 214-228. DOI: https://doi.org/10.1016/j.mtcomm.2018.09.017
- [13] H.K. Dave, N.H. Patadiya, A.R. Prajapati, S.R. Rajpurohit, Effect of infill pattern and infill density at varying part orientation on tensile properties of fused deposition modeling-printed poly-lactic acid part, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 235/10 (2021) 1811-1827. DOI: https://doi.org/10.1177/0954406219856383
- [14] ASTM D3039/D3039M-00: Standard test method for tensile properties of polymer matrix composite materials, in: Annual Book of ASTM Standards Volume 15.03, American Society for Testing and Materials, West Conshohocken, PA, 2000. DOI: https://doi.org/10.1520/D3039_D3039M-00
- [15] F. Górski, W. Kuczko, R. Wichniarek, A. Hamrol, Computation of Mechanical Properties of Parts Manufactured by Fused Deposition Modeling Using Finite Element Method, in: Á. Herrero, J. Sedano, B. Baruque, H. Quintián, E. Corchado (eds.), 10th International Conference on Soft Computing Models in Industrial and Environmental Applications. Advances in Intelligent Systems and Computing, Vol. 368, Springer, Cham, 2015, 403-413. DOI: https://doi.org/10.1007/978-3-319-19719-7_35
- [16] S. Naghieh, M.R. Karamooz Ravari, M. Badrossamay, E. Foroozmehr, M. Kadkhodaei, Numerical investigation of the mechanical properties of the additive manufactured bone scaffolds fabricated by FDM: The effect of layer penetration and post-heating, Journal of the Mechanical Behavior of Biomedical Materials 59 (2016) 241-250. DOI: https://doi.org/10.1016/j.jmbbm.2016.01.031
- [17] M. Othmani, A. Chouaf, K. Zarbane, Modeling and numerical analysis of the mechanical behavior of parts obtained by the FDM type additive manufacturing process, Proceedings of the Mediterranean Symposium on Smart City Application “SCAMS'17”, Tangier, Morocco, 2017, Article no. 3, pp. 1-4. DOI: https://doi.org/10.1145/3175628.3175654
- [18] P.J. Baikerikar, C.J. Turner, Comparison of as-built FEA simulations and experimental results for additively manufactured dogbone geometries. Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 1: 37th Computers and Information in Engineering Conference, Cleveland, Ohio, USA, 2017. Article no. V001T02A021. DOI: https://doi.org/10.1115/DETC2017-67538
- [19] M. Othmani, K. Zarbane, A. Chouaf, Enhanced mesostructural modeling and prediction of the mechanical behavior of acrylonitrile butadiene styrene parts manufactured by fused deposition modeling, International Review of Mechanical Engineering 14/4 (2020) 243-252. DOI: https://doi.org/10.15866/ireme.v14i4.17736
- [20] S-H. Ahn, M. Montero, D. Odell, S. Roundy, P.K. Wright, Anisotropic Material Properties of Fused Deposition Modeling ABS, Rapid Prototyping Journal 8/4 (2002) 248-257. DOI: https://doi.org/10.1108/13552540210441166
- [21] T.J. Gordelier, P.R. Thies, L. Turner, L. Johanning, An Optimising the FDM additive manufacturing process to achieve maximum tensile strength: a state-of-the-art review, Rapid Prototyping Journal 25/6 (2019) 953- 971. DOI: https://doi.org/10.1108/RPJ-07-2018-0183
- [22] D.M. Patel, Effects of infill patterns on time, surface roughness and tensile strength in 3D printing, International Journal of Engineering Development and Research 5/3 (2017) 566-569.
- [23] A. Alafaghani, A. Qattawi, Investigating the effect of fused deposition modeling processing parameters using Taguchi design of experiment method, Journal of Manufacturing Processes 36 (2018) 164-174. DOI: https://doi.org/10.1016/j.jmapro.2018.09.025
- [24] A. Pandzic, D. Hodzic, A. Milovanovic, Effect of infill type and density on tensile properties of PLA material for FDM process, Proceedings of the 30th DAAAM International Symposium on Intelligent Manufacturing and Automation, Vienna, Austria, 2019, 0545-0554. DOI: https://doi.org/10.2507/30th.daaam.proceedings.074
- [25] A. Chadha, M.I.U. Haq, A. Raina, R.R. Singh, N.B. Penumarti, M.S. Bishnoi, Effect of fused deposition modelling process parameters on mechanical properties of 3D printed parts, World Journal of Engineering 16/4 (2019) 550-559. DOI: https://doi.org/10.1108/WJE-09- 2018-0329
- [26] G. Ehrmann, A. Ehrmann, Shape-Memory Properties of 3D Printed PLA Structures. Shape-Memory Properties of 3D Printed PLA Structures, Proceedings 69/1 (2021) 6. DOI: https://doi.org/10.3390/CGPM2020-07198
- [27] A. Garg, A. Bhattacharya, An insight to the failure of FDM parts under tensile loading: finite element analysis and experimental study, International Journal of Mechanical Sciences 120 (2017) 225-236. DOI: https://doi.org/10.1016/j.ijmecsci.2016.11.032
- [28] A. Schmailzl, T. Amann, M. Glockner, M. Fadanelli, M. Wagner, S. Hierl, Finite element analysis of thermo-plastic probes under tensile load using LS-DYNA compared to ANSYS WB 14 in correlation to experi-mental investigations, Proceedings of the ANSYS Con-ference & 30th CADFEM users’ meeting, Kassel, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e2124a8-6e54-44d5-b650-3f0e27249ecb