PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Cutting Conditions on Temperature Distribution in Face Milling of Inconel 718 Nickel-Chromium Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents 3D FEM simulation results obtained for the milling operations on a nickel-chromium alloy (Inconel 718) using the Johnson-Cook material constitutive model and variable cutting conditions. Face milling tests were carried out using silicon-aluminum-oxygen-nitrogen (SiAlON) ceramic cutting tools inserts. The machining conditions were selected based on real production data (cutting speed of vc=750 and 800 m/min, feed of f=0.1, 0.125 and 0.15 mm/t, depth of cut of ap=1, 1.5 and 2 mm). The FEM simulations include the maximum and average values of the cutting temperature. They were compared with experimental data obtained by using the high speed infra-red camera.
Rocznik
Strony
5--16
Opis fizyczny
Bibliogr. 20 poz., tab., rys.
Twórcy
autor
autor
  • Opole University of Technology, Dept. of Manufacturing Engineering and Process Automation, Opole, Poland
autor
  • Rzeszów University of Technology, Dept. of Manufacturing Techniques and Automation, Rzeszów, Poland
autor
  • WSK PZL Rzeszów, Poland
Bibliografia
  • [1] UHLMANN E., Von Der SCHULENBURG M.G., ZETTIER R., 2007, Finite element modeling and cutting simulation of inconel 718, CIRP Ann. - Manuf. Technol., 56/1, 61–64.
  • [2] ARRAZOLA P.J., ÖZEL T., UMBRELLO D., DAVIES M., JAWAHIR I.S., 2013, Recent advances in modelling of metal machining processes, CIRP Ann. - Manuf. Technol., 62/2, 695–718.
  • [3] NIESŁONY P., GRZESIK W., HABRAT W., 2015, Experimental and simulation investigations of face milling process of Ti-6Al-4V titanium alloy, Adv. Manuf. Sci. Technol., 39, 39–52.
  • [4] BUCHKREMER S., WU B., LUNG D., MÜNSTERMANN S., KLOCKE F., BLECK W., 2014, FE-simulation of machining processes with a new material model, J. Mater. Process. Technol., 214/3, 599–611.
  • [5] NIESLONY P., GRZESIK W., CHUDY R., LASKOWSKI P., HABRAT W., 2014, 3D FEM Simulation of Titanium Machining, Int. Conference on Adv. Manufacturing Engineering and Technologies,, 31–40.
  • [6] YOO J.T., YOON J.H., LEE H.S., YOUN S.K., 2012, Material characterization of Inconel 718 from free bulging test at high temperature, J. Mech. Sci. Technol., 26/7, 2101–2105.
  • [7] JAFARIAN F., IMAZ CIARAN M., UMBRELLO D.,. ARRAZOLA P.J, FILICE L., AMIRABADI H., 2014, Finite element simulation of machining Inconel 718 alloy including microstructure changes, Int. J. Mech. Sci., 88, 110–121.
  • [8] GRZESIK W., NIESLONY P., 2008, FEM–based thermal modelling of the cutting process using power law-temperature dependent concept, Arch. Mater. Sci. Eng., 29/2, 105–108.
  • [9] KLOCKE F., LUNG D., BUCHKREMER S., 2013, Inverse identification of the constitutive equation of inconel 718 and AISI 1045 from FE machining simulations, Procedia CIRP, 8, 212–217.
  • [10] CHEN Y., BUNGET C., MEARS L., KURFESS T.R., 2013, An Improved Empirical Constitutive Model for γ ’ -Strengthened Nickel-Based Superalloys, Proceedings of NAMRI/SME, 41.
  • [11] NIESLONY P., GRZESIK W., LASKOWSKI P., HABRAT W., 2013, FEM-Based modelling of the influence of thermophysical properties of work and cutting tool materials on the process performance, Procedia CIRP, 8, 3–8.
  • [12] NIESŁONY P., GRZESIK W., LASKOWSKI P., SIENAWSKI J., 2014, Numerical and Experimental Analysis of Residual Stresses Generated in the Machining of Ti6Al4V Titanium Alloy, Procedia CIRP, 13, 78–83.
  • [13] ZEMZEMI F., RECH J., BEN SALEM W., DOGUI A., KAPSA P., 2014, Identification of friction and heat partition model at the tool-chip-workpiece interfaces in dry cutting of an inconel 718 alloy with cbn and coated carbide tools, Adv. Manuf. Sci. Technol., 38/1, 5-22.
  • [14] DEL PRETE A., FILICE L., UMBRELLO D., 2013, Numerical simulation of machining nickel-based alloys, Procedia CIRP, 8, 540–545.
  • [15] PAWADE R.S., JOSHI S.S., 2011, Mechanism of Chip Formation in High-Speed Turning of Inconel 718, Mach. Sci. Technol., 15/1, 132–152.
  • [16] CANTERO J.L., DÍAZ-ÁLVAREZ J., MIGUÉLEZ M.H., MARÍN N.C., 2013, Analysis of tool wear patterns in finishing turning of Inconel 718, Wear, 297/1–2, 885–894.
  • [17] PUJANA J., ARRAZOLA P.J.,SAOUBI R.M., CHANDRASEKARAN H., 2007, Analysis of the inverse identification of constitutive equations applied in orthogonal cutting process, Int. J. Mach. Tools Manuf., 47/14, 2153–2161.
  • [18] NIESŁONY P., GRZESIK W., CHUDY R., HABRAT W., 2014, Meshing strategies in FEM simulation of the machining process, Arch. Civ. Mech. Eng., 1–9.
  • [19] Material Properties Database, MPDB, JAHM Software, Inc., 2015.
  • [20] NIESLONY P., GRZESIK W., 2013, Sensitivity Analysis of the Constitutive Models in Fem-Based Simulation of the Cutting Process, J. Mach. Eng., 13/1, 106–116.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e1aa53f-ecca-4ffc-b988-0a22c0433417
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.