Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present work investigated the properties of rubber vulcanizates containing different nanoparticles (Cloisite 20A and Cloisite Na+) and prepared using different sonication amplitudes. The results showed that a maximum improvement in tensile strength of more than 60% over the reference sample was obtained by the nanocomposites containing 2 wt.% Cloisite 20A and 1 wt.% Cloisite Na+ and mixed with a maximum amplitude of 270 µm. The modulus at 300% elongation increased by approximately 18% and 25% with the addition of 2 wt.% Cloisite 20A and 3 wt.% Cloisite Na+, respectively. The shape retention coefficient of rubber samples was not significantly affected by the mixing amplitude, while the values of the softness measured at the highest amplitude (270 µm) were higher compared to those of mixtures homogenized with lower amplitudes. The loading-unloading and loading-reloading processes showed similar trends for all tested nanocomposites. However, they increased with increasing levels of sample stretching but were not significantly affected by filler content at a given elongation. More energy was dissipated during the loading-unloading process than during the loading-reloading. SEM micrographs of rubber samples before and after cycling loading showed rough, stratified, and elongated morphologies. XRD results showed that elastomeric chains were intercalated in the MMT nanosheets, confirming the improvement of mechanical properties. The difference between the hydrophilic pristine nanoclay (Cloisite Na+) and organomodified MMT (Cloisite 20A) was also highlighted, while the peaks of the stretched rubber samples were smaller, regardless of the rubber composition, due most probably to the decrease of interlayer spacing.
Rocznik
Tom
Strony
art. no. e147059
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
- University of Technology and Humanities in Radom, Faculty of Chemical Engineering and Commodity Science, Poland
autor
- University of Technology and Humanities in Radom, Faculty of Chemical Engineering and Commodity Science, Poland
autor
- University of Technology and Humanities in Radom, Faculty of Chemical Engineering and Commodity Science, Poland
autor
- Tomaš Bata University in Zlin, Centre of Polymer Systems, Czech Republic
autor
- University of Technology and Humanities in Radom, Faculty of Chemical Engineering and Commodity Science, Poland
Bibliografia
- [1] L. Bokobza, “The Reinforcement of Elastomeric Networks by Fillers,” Macromol. Mater. Eng., vol. 289, no. 7, pp. 607–621, 2004, doi: 10.1002/mame.200400034.
- [2] L. Tadiello, S. Guerra, and L. Giannini, “Sepiolite-Based Anisotropic Nanoparticles: A New Player in the Rubber Reinforcement Technology for Tire Application,” Appl. Sci., vol. 12, no. 5, 2022, doi: 10.3390/app12052714.
- [3] G. Heinrich, M. Klüppel, and T.A. Vilgis, “Reinforcement of elastomers,” Curr. Opin. Solid State Mater. Sci., vol. 6, no. 3, pp. 195– 203, 2002, doi: 10.1016/S1359-0286(02)00030-X.
- [4] L. Gu, H. Nan, R. Xing, G. Pan, Y. Wang, and X. Ge, “Mechanical and thermal performances of styrene butadiene rubber nanocomposites with boron nitride nanosheets, carbon nanotubes, and the hybrid filler system,” Polym Compos., vol. 44, no. 1, pp. 480–491, 2023, doi: 10.1002/pc.27111.
- [5] A.S. Sethulekshmi, A. Saritha, and K. Joseph, “A comprehensive review on the recent advancements in natural rubber nanocomposites,” Int. J. Biol. Macromol., vol. 194, pp. 819–842, 2022, doi: 10.1016/j.ijbiomac.2021.11.134.
- [6] S.K. Srivastava and Y.K. Mishra, “Nanocarbon reinforced rubber nanocomposites: detailed insights about mechanical, dynamical mechanical properties, payne, and mullin effects,” Nanomaterials, vol. 8, no. 11, 2018, doi: 10.3390/nano8110945.
- [7] D.Z. Pirityi, T. Barany, and K. Pölöskei, “Hybrid reinforcement of styrene-butadiene rubber nanocomposites with carbon black, silica, and grapheme,” J. Appl. Polym. Sci., vol. 139 no. 32, p. e52766, 2022, doi: 10.1002/app.52766.
- [8] X. Li, J. Liu, and Z.J. Zheng, “Recent progress of elastomer–silica nanocomposites toward green tires: simulation and experiment,” Polym. Int., vol. 72, vo. 9, pp. 764–782, 2023, doi: 10.1002/pi.6454.
- [9] A. Alipour, G. Naderi, G.R. Bakhshandeh, H. Vali, and S. Shokoohi, “Elastomer nanocomposites based on NR/EPDM/organoclay: morphology and properties,” Int. Polym. Process., vol. 26, no. 1, pp. 48–55, 2011, doi: 10.3139/217.2381.
- [10] S.M. Liff, N. Kumar, and G.H. McKinley, “High-performance elastomeric nanocomposites via solvent-exchange processing,” Nat. Mater., vol. 6, no. 1, pp. 76–83, 2007, doi: 10.1038/nmat1798.
- [11] M.A. Lopez-Manchado, B. Herrero and M.J.P.I. Arroyo, “Preparation and characterization of organoclay nanocomposites based on natural rubber,” Polym. Int., vol. 52, no. 7, pp. 1070–1077, 2003, doi: 10.1002/pi.1161.
- [12] M.S. Kim, D.W. Kim, S. Ray Chowdhury and G.H. Kim, “Melt-compounded butadiene rubber nanocomposites with improved mechanical properties and abrasion resistance,” J. Appl. Polym. Sci., vol. 102, no. 3, pp. 2062–2066, 2006, doi: 10.1002/app.23738.
- [13] M. Zarei, G. Naderi, G.R. Bakhshandeh, and S. Shokoohi, “Ternary elastomer nanocomposites based on NR/BR/SBR: effect of nanoclay composition,” J. Appl. Polym. Sci., vol. 127, no. 3, pp. 2038–2045, 2013, doi: 10.1002/app.37687.
- [14] L. Zhang, Y. Wang, Y. Wang, Y. Sui, and D. Yu, “Morphology and mechanical properties of clay/styrene-butadiene rubber nanocomposites,” J. Appl. Polym. Sci., vol. 78, no. 11, pp. 1873–1878, 2000, doi: 10.1002/1097-4628(20001209)78:11<1873::AID-APP40>3.0.CO;2-8.
- [15] S. Mitra, S. Chattopadhyay, and A.K. Bhowmick, “Preparation and characterization of elastomer-based nanocomposite gels using an unique latex blending technique,” J. Appl. Polym. Sci., vol. 118, no. 1, pp. 81–90, 2010, doi: 10.1002/app.32389.
- [16] M. Ganter, W. Gronski, P. Reichert, and R. Mülhaupt, “Rubber nanocomposites: morphology and mechanical properties of BR and SBR vulcanizates reinforced by organophilic layered silicates,” Rubber Chem. Technol., vol. 74, no. 2, pp. 221–235, 2001, doi: 10.5254/1.3544946.
- [17] Y. Liang, Y. Wang, Y. Wu, Y. Lu, H. Zhang, and L. Zhang, “Preparation and properties of isobutylene–isoprene rubber (IIR)/clay nanocomposites,” Polym. Test., vol. 24, no. 1, pp. 12–17, 2005, doi: 10.1016/j.polymertesting.2004.08.004.
- [18] A. Maiti et al., “Mullins effect in a filled elastomer under uniaxial tension,” Phys. Rev. E, vol. 89, no. 1, p. 012602, 2014, doi: 10.1103/PhysRevE.89.012602.
- [19] C. Ma, T. Ji, C.G. Robertson, R. Rajeshbabu, J. Zhu, and Y. Dong, “Molecular insight into the Mullins effect: irreversible disentanglement of polymer chains revealed by molecular dynamics simulations,” Phys. Chem. Chem. Phys., vol. 19, no. 29, pp. 19468–19477, 2017, doi: 10.1039/C7CP01142C.
- [20] W. Fu et al., “Mechanical properties and Mullins effect in natural rubber reinforced by grafted carbon black,” Adv. Polym. Technol., vol. 2019, p. 4523696, 2019, doi: 10.1155/2019/4523696.
- [21] Y. Song, R. Yang, M. Du, X. Shi, and Q. Zheng, “Rigid nanoparticles promote the softening of rubber phase in filled vulcanizates,” Polymer, vol. 177, pp. 131–138, 2019, doi: 10.1016/j.polymer.2019.06.003.
- [22] J.M. Clough, C. Creton, S.L. Craig, and R.P. Sijbesma, “Covalent bond scission in the Mullins effect of a filled elastomer: real-time visualization with mechanoluminescence,” Adv. Funct. Mater., vol. 26, no. 48, pp. 9063–9074, 2016, doi: 10.1002/adfm.201602490.
- [23] H. Khajehsaeid, “Development of a network alteration theory for the Mullins-softening of filled elastomers based on the morphology of filler–chain interactions,” Int. J. Solids Struct., vol. 80, pp. 158–167, 2016, doi: 10.1016/j.ijsolstr.2015.10.032.
- [24] X. Liang and K. Nakajima, “Study of the Mullins effect in carbon black- filled styrene–butadiene rubber by atomic force microscopy nanomechanics,” Macromolecules, vol. 55, no. 14, pp. 6023–6030, 2022, doi: 10.1021/acs.macromol.2c00776.
- [25] M. Qian et al., “The influence of filler size and crosslinking degree of polymers on Mullins effect in filled NR/BR composites,” Polymers, vol. 13, no. 14, p. 2284, 2021, doi: 10.3390/polym13142284.
- [26] Y. Pan and Z. Zhong, “Modeling the Mullins effect of rubber-like materials,” Int. J. Damage Mech., vol. 26, no. 6, pp. 933–948, 2017, doi: 10.1177/1056789516635728.
- [27] S. Cantournet, R, Desmorat, and J. Besson, “Mullins effect and cyclic stress softening of filled elastomers by internal sliding and friction thermodynamics model,” Int. J. Solids Struct., vol. 46, no. 11–12, pp. 2255–2264, 2009, doi: 10.1016/j.ijsolstr.2008.12.025.
- [28] H. Wan et al., “Chemical bond scission and physical slip-page in the Mullins effect and fatigue behavior of elastomers,” Macromolecules, vol. 52, no. 11, pp. 4209–4221, 2019, doi: 10.1021/acs.macromol.9b00128.
- [29] P. Zhu and Z. Zhong, “Constitutive modelling for the mullins effect with permanent set and induced anisotropy in particlefilled rubbers,” Appl. Math. Model., vol. 97, pp. 19–35, 2021, doi:10.1016/j.apm.2021.03.031.
- [30] J. Diani, B. Fayolle, and P. Gilormini, “A review on the Mullins effect,” Eur. Polym. J., vol. 45, no. 3, pp. 601–612, 2009, doi: 10.1016/j.eurpolymj.2008.11.017.
- [31] S. Krpovic, K. Dam-Johansen, and A.L. Skov, “Importance of Mullins effect in commercial silicone elastomer formulations for soft robotics,” J. Appl. Polym. Sci., vol. 138, no. 19, p. 50380, 2021, doi: 10.1002/app.50380.
- [32] G. Marckmann, E. Verron, L. Gornet, G. Chagnon, P. Charrier, and P. Fort, “A theory of network alteration for the Mullins effect,” J. Mech. Phys. Solids, vol. 50, no. 9, pp. 2011–2028, 2002, doi: 10.1016/S0022-5096(01)00136-3.
- [33] A. Das, R. Jurk, K.W. Stöckelhuber, and G. Heinrich, “Effect of Vulcanization Ingredients on the Intercalation-Exfoliation Process of Layered Silicate in an Acrylonitrile Butadiene Rubber Matrix,” Macromol. Mater. Eng., vol. 293, no. 6, pp. 479–490.2008, doi: 10.1002/mame.200700375.
- [34] D. Ondrušová et al., “Targeted modification of the composition of polymer systems for industrial applications,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 2, p. e136721, 2021, doi: 10.24425/bpasts.2021.136721.
- [35] Z. Li, F. Wen, M. Hussain, Y. Song, and Q. Zheng, “Scaling laws of Mullins effect in nitrile butadiene rubbernanocomposites,” Polymer, vol. 193, 2020, doi: 10.1016/j.polymer.2020.122350.
- [36] R. Pyrz and B. Bochenek, “Discrete-continuum transition at interfaces ofnanocomposites,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 55, no. 2, pp. 251–260, 2007.
- [37] S. Wang and S.A. Chester, “Modeling thermal recovery of the Mullins effect,” Mech. Mater., vol. 126, pp. 88–98, 2018, doi: 10.1016/j.mechmat.2018.08.002.
- [38] Z. Li, H. Xu, X. Xia, Y. Song, and Q. Zheng, “Energy dissipation accompanying Mullins effect of nitrile butadiene rubber/carbon black nanocomposites,” Polymer, vol. 171, pp. 106–114, 2019, doi: 10.1016/j.polymer.2019.03.043.
- [39] H. Chu, J. Lin, D. Lei, J. Qian, and R. Xiao, “A network evolution model for recovery of the Mullins effect in filled rubbers,” Int. J. Appl. Mech., vol. 12, no. 9, p. 2050108, 2020, doi: 10.1142/S1758825120501082.
- [40] L. Yan, D.A. Dillard, R.L. West, L.D. Lower, and G.V. Gordon, “Mullins effect recovery of a nanoparticle-filled polymer,” J. Polym. Sci. B Polym. Phys., vol. 48, no. 21, pp. 2207–2214, 2010, doi: 10.1002/polb.22102.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e19ef57-36a7-44c0-a2d4-c69f09f489c2