PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on microwave-assisted TBM double-edged cutter rock-breaking efficiency and its positional relationship

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, based on a microwave test, the discrete element program (PFC) is used to establish a microwave-assisted disc cutter rock-breaking model and explore the influence law of the positional relationship between microwave radiation and disc cutter penetration on rock-breaking efficiency, and the results show that: The improvement of the positional relationship has a significant effect on improving the rock-breaking efficiency, and the double-edged cutter reaches and minimum rock-breaking specific energy when breaking the rock in the center position with a waveguide spacing of 90 mm and in the innerand outerpositions with a waveguide spacing of 150 mm; When the waveguide spacing is 150mm, the double-edged cutter with cutter spacing of 110mm, 130mm, and 190mm have their advantages in rock-breaking efficiency and economic benefits, which should be selected according to the actual needs of the project. The follow-up research should also fully consider the rock type, microwave parameters, cutter profile,engineering environment, and other factors for in-depth investigation.
Rocznik
Strony
art. no. 186447
Opis fizyczny
Bibliogr. 64 poz., rys., tab., wykr.
Twórcy
autor
  • School of Civil and Architecture Engineering, Henan University, China
autor
  • School of Civil and Architecture Engineering, Henan University, China
autor
  • School of Civil and Architecture Engineering, Henan University, China
autor
  • School of Civil and Architecture Engineering, Henan University, China
autor
  • School of Civil and Architecture Engineering, Henan University, China
Bibliografia
  • 1. Editorial Department of China Journal of Highway and Transport. Review on China's Traffic Tunnel Engineering Research: 2022[J]. China Journal of Highway and Transport, 2022, 35(4): 1-40.
  • 2. Entacher M, Lorenz S, Galler R. Tunnel boring machine performance prediction with scaled rock cutting tests[J]. InternationalJournal of Rock Mechanics and Mining Sciences, 2014, 70: 450-459.https://doi.org/10.1016/j.ijrmms.2014.04.021
  • 3. Rostami J. Performance prediction of hard rock Tunnel Boring Machines (TBMs) in difficult ground[J]. Tunnelling and Underground Space Technology, 2016, 57: 173-182.https://doi.org/10.1016/j.tust.2016.01.009
  • 4. LIU P, LIANG W H. Design considerations for construction of the Qinling Tunnel using TBM [J]. Tunnelling and Underground Space Technology, 2000, 15(2): 139−146. DOI: 10.1016/S0886-7798(00)00041-9.
  • 5. Su W, Li X, Jin D, et al. Analysis and prediction of TBM disc cutter wear when tunneling in hard rock strata: a case study ofa metro tunnel excavation in Shenzhen, China[J]. Wear, 2020, 446: 203190
  • 6. VANIN D. The application of a tunnel-boring machine for exploration drifting at Kiena Gold Mines Limited, Val d'Or, Quebec [J]. CIM Bulletin, 1987, 80: 41−47.
  • 7. ROBBINS. Caving hard rock with a small diameter double shield [OL/OB]. The Robbins Company, 2014.http://www.therobbinscompany.com/wp-content/uploads/2014/09/Robbins_Newsletter_Summer_2014. pdf.
  • 8. Courbon C, Kramar D, Krajnik P, et al. Investigation of machining performance in high-pressure jet assisted turning of Inconel 718: an experimental study[J]. International Journal of Machine Tools and Manufacture, 2009, 49(14): 1114-1125.https://doi.org/10.1016/j.ijmachtools.2009.07.010
  • 9. Ayed Y, Germain G. High-pressure water-jet-assisted machining of Ti555-3 titanium alloy: investigation of tool wear mechanisms[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96: 845-856.https://doi.org/10.1007/s00170-018-1661-2
  • 10. Carstens J P, Brown C O. Rock cutting by laser[C]//SPE Annual Technical Conference and Exhibition?. SPE, 1971: SPE-3529-MS.
  • 11. Xu Z, Reed C B, Konercki G, et al. Specific energy for pulsed laser rock drilling[J]. Journal of laser applications, 2003, 15(1): 25-30.https://doi.org/10.2351/1.1536641
  • 12. Dhar N R, Kamruzzaman M, Khan M M A, et al. Effects of cryogenic cooling by liquid nitrogen jets on tool wear, surface finishand dimensional deviation in turning different steels[J]. International Journal of Machining and Machinability of Materials, 2006,1(1): 115-131.https://doi.org/10.1504/IJMMM.2006.010662
  • 13. Zhang S, Huang Z, Li G, et al. Numerical analysis of transient conjugate heat transfer and thermal stress distribution in geothermal drilling with high-pressure liquid nitrogen jet[J]. Applied Thermal Engineering, 2018, 129: 1348-1357.https://doi.org/10.1016/j.applthermaleng.2017.10.042
  • 14. Zhang J, Yang F, Cao Z, et al. In situ experimental study on TBM excavation with high-pressure water-jet-assisted rock-breaking[J]. Journal of Central South University, 2022, 29(12): 4066-4077.https://doi.org/10.1007/s11771-022-5204-5
  • 15. Rui F, Zhao G F. Experimental and numerical investigation of laser-induced rock damage and the implications for laser-assisted rock cutting[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 139: 104653.
  • 16. Dai X, Huang Z, Wu X, et al. Failure analysis of high-temperature granite under the joint action of cutting and liquid nitrogen jet impingement[J]. Rock Mechanics and Rock Engineering, 2021, 54(12): 6249-6264.https://doi.org/10.1007/s00603-021-02600-1
  • 17. Clark D E, Folz D C, West J K. Processing materials with microwave energy[J]. Materials Science and Engineering: A, 2000, 287(2): 153-158.https://doi.org/10.1016/S0921-5093(00)00768-1
  • 18. Kutlu N, Pandiselvam R, Saka I, et al. Impact of different microwave treatments on food texture[J]. Journal of Texture Studies, 2022, 53(6): 709-736.https://doi.org/10.1111/jtxs.12635
  • 19. Pandiselvam R, Hebbar K B, Manikantan M R, et al. Microwave treatment of coconut inflorescence Sap (Kalparasa®): A panacea topreserve quality attributes[J]. Sugar Tech, 2020, 22: 718-726.https://doi.org/10.1007/s12355-020-00828-9
  • 20. Lal A M N, Prince M V, Kothakota A, et al. Pulsed electric field combined with microwave-assisted extraction of pectin polysaccharide from jackfruit waste[J]. Innovative Food Science & Emerging Technologies, 2021, 74: 102844.
  • 21. Srinivas Y, Mathew S M, Kothakota A, et al. Microwave assisted fluidized bed drying of nutmeg mace for essential oil enrichedextracts: An assessment of drying kinetics, process optimization and quality[J]. Innovative Food Science & Emerging Technologies, 2020, 66: 102541.
  • 22. Pandiselvam R, Prithviraj V, Manikantan M R, et al. Central composite design, Pareto analysis, and artificial neural network for modeling of microwave processing parameters for tender coconut water[J]. Measurement: Food, 2022, 5: 100015.
  • 23. Jones D A, Kingman S W, Whittles D N, et al. Understanding microwave assisted breakage[J]. Minerals engineering, 2005, 18(7):659-669.https://doi.org/10.1016/j.mineng.2004.10.011
  • 24. Hartlieb P, Leindl M, Kuchar F, et al. Damage of basalt induced by microwave irradiation[J]. Minerals Engineering, 2012, 31: 82-89.https://doi.org/10.1016/j.mineng.2012.01.011
  • 25. Ford J D, Pei D C T. High temperature chemical processing via microwave absorption[J]. Journal of Microwave Power, 1967, 2(2): 61-64. https://doi.org/10.1080/00222739.1967.11688647
  • 26. Lu G, Li Y, Hassani F, et al. The influence of microwave irradiation on thermal properties of main rock-forming minerals[J]. Applied Thermal Engineering, 2017, 112: 1523-1532.https://doi.org/10.1016/j.applthermaleng.2016.11.015
  • 27. Zheng Y L, Zhao X B, Zhao Q H, et al. Dielectric properties of hard rock minerals and implications for microwave-assisted rock fracturing[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2020, 6(1): 22.https://doi.org/10.1007/s40948-020-00147-z
  • 28. Ali A Y, Bradshaw S M. Bonded-particle modelling of microwave-induced damage in ore particles[J]. Minerals Engineering, 2010, 23(10): 780-790.https://doi.org/10.1016/j.mineng.2010.05.019
  • 29. Chen S, Yang C, Wang G. Evolution of thermal damage and permeability of Beishan granite[J]. Applied Thermal Engineering, 2017, 110: 1533-1542.https://doi.org/10.1016/j.applthermaleng.2016.09.075
  • 30. Gautam P K, Verma A K, Sharma P, et al. Evolution of thermal damage threshold of Jalore granite[J]. Rock Mechanics and Rock Engineering, 2018, 51: 2949-2956.https://doi.org/10.1007/s00603-018-1493-2
  • 31. Lu G M, Feng X T, Li Y H, et al. Experimental investigation on the effects of microwave treatment on basalt heating, mechanical strength, and fragmentation[J]. Rock Mechanics and Rock Engineering, 2019, 52: 2535-2549.https://doi.org/10.1007/s00603-019-1743-y
  • 32. Sun H, Sun Q, Deng W, et al. Temperature effect on microstructure and P-wave propagation in Linyi sandstone[J]. Applied Thermal Engineering, 2017, 115: 913-922.https://doi.org/10.1016/j.applthermaleng.2017.01.026
  • 33. Gao M Z, Yang B G, Xie J, et al. The mechanism of microwave rock-breaking and its potential application to rock-breaking technology in drilling[J]. Petroleum Science, 2022, 19(3): 1110-1124.https://doi.org/10.1016/j.petsci.2021.12.031
  • 34. Lu G M, Feng X T, Li Y H, et al. The microwave-induced fracturing of hard rock[J]. Rock Mechanics and Rock Engineering, 2019, 52: 3017-3032.https://doi.org/10.1007/s00603-019-01790-z
  • 35. Hartlieb P, Kuchar F, Moser P, et al. Reaction of different rock types to low-power (3.2 kW) microwave irradiation in a multimode cavity[J]. Minerals Engineering, 2018, 118: 37-51.https://doi.org/10.1016/j.mineng.2018.01.003
  • 36. Peinsitt T, Kuchar F, Hartlieb P, et al. Microwave heating of dry and water saturated basalt, granite and sandstone[J]. International Journal of Mining and Mineral Engineering, 2010, 2(1): 18-29.https://doi.org/10.1504/IJMME.2010.031810
  • 37. Zeng J, Hu Q, Chen Y, et al. Experimental investigation on structural evolution of granite at high temperature induced by microwave irradiation[J]. Mineralogy and Petrology, 2019, 113: 745-754.https://doi.org/10.1007/s00710-019-00681-z
  • 38. Hartlieb P, Toifl M, Kuchar F, et al. Thermo-physical properties of selected hard rocks and their relation to microwave-assisted comminution[J]. Minerals Engineering, 2016, 91: 34-41.https://doi.org/10.1016/j.mineng.2015.11.008
  • 39. Bisai R, Palaniappan S K, Pal S K. Influence of individual and combined pre-treatment on the strength properties of granite and sandstone[J]. Arabian Journal of Geosciences, 2020, 13: 1-10.https://doi.org/10.1007/s12517-019-5009-5
  • 40. Deyab S M, Rafezi H, Hassani F, et al. Experimental investigation on the effects of microwave irradiation on kimberlite and granite rocks[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(2): 267-274.https://doi.org/10.1016/j.jrmge.2020.09.001
  • 41. Nejati H, Hassani F, Radziszewski P. Experimental investigation of fracture toughness reduction and fracture development in basalt specimens under microwave illumination[M]//Earth and Space 2012: Engineering, Science, Construction, and Operations in Challenging Environments. 2012: 325-334.https://doi.org/10.1061/9780784412190.036
  • 42. Kahraman S, Canpolat A N, Fener M. The influence of microwave treatment on the compressive and tensile strength of igneous rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 129: 104303.
  • 43. Zheng Y, Ma Z, Zhao X, et al. Experimental investigation on the thermal, mechanical and cracking behaviours of three igneous rocks under microwave treatment[J]. Rock Mechanics and Rock Engineering, 2020, 53: 3657-3671.https://doi.org/10.1007/s00603-020-02135-x
  • 44. Li Q, Li X, Yin T. Effect of microwave heating on fracture behavior of granite: An experimental investigation[J]. EngineeringFracture Mechanics, 2021, 250: 107758.https://doi.org/10.1016/j.engfracmech.2021.107758
  • 45. Lu G, Ding C, Hong K, et al. Influences of Microwave Irradiation on the Physicomechanical Properties and Cerchar Abrasivity Index of Rocks[J]. Geofluids, 2023, 2023.https://doi.org/10.1155/2023/3889083
  • 46. Ge Z, Sun Q, Xue L, et al. The influence of microwave treatment on the mode I fracture toughness of granite[J]. Engineering Fracture Mechanics, 2021, 249: 107768.https://doi.org/10.1016/j.engfracmech.2021.107768
  • 47. Yang Z, Yin T, Wu Y, et al. Mixed‐mode I/II fracture properties and failure characteristics of microwave‐irradiated basalt: An experimental study[J]. Fatigue & Fracture of Engineering Materials & Structures, 2023, 46(3): 814-834.https://doi.org/10.1111/ffe.13897
  • 48. Bai G, Sun Q, Jia H, et al. Variations in fracture toughness of SCB granite influenced by microwave heating[J]. Engineering Fracture Mechanics, 2021, 258: 108048.https://doi.org/10.1016/j.engfracmech.2021.108048
  • 49. Ahmadihosseini A, Shadi A, Rabiei M, et al. Computational study of microwave heating for rock fragmentation; model development and validation[J]. International Journal of Thermal Sciences, 2022, 181: https://doi.org/10.1016/j.ijthermalsci.2022.107746.
  • 50. Hassani F, Shadi A, Rafezi H, et al. Energy analysis of the effectiveness of microwave-assisted fragmentation[J]. Minerals Engineering, 2020, 159: 106642.https://doi.org/10.1016/j.mineng.2020.106642
  • 51. Teimoori K, Cooper R. Multiphysics study of microwave irradiation effects on rock breakage system[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 140: https://doi.org/10.1016/j.ijrmms.2020.104586
  • 52. Shadi A, Ahmadihosseini A, Rabiei M, et al. Numerical and experimental analysis of fully coupled electromagnetic and thermal phenomena in microwave heating of rocks[J]. Minerals Engineering, 2022, 178: https://doi.org/10.1016/j.mineng.2022.107406.
  • 53. GAO Feng, SHAO Yan, XIONG Xin, ZHOU Ke-ping, CAO Shan-peng. Rising characteristics of internal and external temperatures of rock specimens under different microwave irradiation modes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 650-657. doi: 10.11779/CJGE202004007
  • 54. Feng X, Li S, Yang C, et al. The Influence of the Rotary Speed of a Microwave Applicator on Hard-Rock Fracturing Effect[J]. Rock Mechanics and Rock Engineering, 2022, 55(11): 6963-6979.https://doi.org/10.1007/s00603-022-02956-y
  • 55. Rui F, Zhao G F, Zheng Y, et al. Electromagnetic-thermo-mechanical coupled modelling of microwave-assisted TBM disc cutting[J]. Tunnelling and Underground Space Technology, 2023, 138: https://doi.org/10.1016/j.tust.2023.105171.
  • 56. Lu G, Zhou J, Zhang L, et al. Experimental investigation on the influence of microwave exposure on the cutting performance ofTBM disc cutter cutting of hard rocks[J]. Results in Engineering, 2021, 12: https://doi.org/10.1016/j.tust.2023.105171.
  • 57. Lu G, Ding C, Zhou J, et al. Influences of Microwave Irradiation on Rock-Breaking Efficiency of a Reduced-Scale TBM Cutter[J]. Applied Sciences, 2023, 13(8): 4713.https://doi.org/10.3390/app13084713
  • 58. Hartlieb P, Grafe B, Shepel T, et al. Experimental study on artificially induced crack patterns and their consequences on mechanical excavation processes[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 100: 160-169.https://doi.org/10.1016/j.ijrmms.2017.10.024
  • 59. Marland S, Merchant A, Rowson N. Dielectric properties of coal. Fuel. 2001;80(13):1839-49.https://doi.org/10.1016/S0016-2361(01)00050-3
  • 60. Jones DS. The theory of electromagnetism. Oxford: Pergamon Press; 1964.
  • 61. Itasca. PFC2D—Particle Flow Code in 2 Dimensions, Version 5.0 [M]. Itasca Consulting Group Inc. Minneapolis, MN, USA, 2014.
  • 62. Hassani F, Nekoovaght P M, Gharib N. The influence of microwave irradiation on rocks for microwave-assisted underground excavation[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(1): 1-15.https://doi.org/10.1016/j.jrmge.2015.10.004
  • 63. Hartlieb P, Grafe B. Experimental study on microwave assisted hard rock cutting of granite[J]. BHM Berg-und Hüttenmännische Monatshefte, 2017, 162(2): 77-81.https://doi.org/10.1007/s00501-016-0569-0
  • 64. WangJ., FengC., ZhangY. Numerical simulation of rock thermal fracture considering the temperature dependence[J]. Journal of Shandong University(Engineering Science), 2023, 53(1): 106-113.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e187492-1310-44fe-ae38-11942809768f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.