Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The distributional properties of the duration of a recurrent Bessel process straddling an independent exponential time are studied in detail. Although our study may be considered as a particular case of Winkel’s in [25], the infinite divisibility structure of these Bessel durations is particularly rich and we develop algebraic properties for a family of random variables arising from the Lévy measures of these durations.
Czasopismo
Rocznik
Tom
Strony
315--366
Opis fizyczny
Bibliogr. 27 poz., tab.
Twórcy
autor
- Laboratoire de Probabilités et Modèles Aléatoires, Université Pierre et Marie Curie, Case 188, 4 place Jussieu, 75252 Paris Cedex 05
autor
- Graduate School of Commerce and Management, Hitotsubashi University, Naka 2.1, Kunitachi, Tokyo, 186.8601 Japan
autor
- Institut Elie Cartan, Université Henri Poincaré, B.P. 239, 54506 Vandoeuvre les Nancy Cedex
autor
- Laboratoire de Probabilités et Modèles Aléatoires, Université Pierre et Marie Curie, Case 188, 4 place Jussieu, 75252 Paris Cedex 05
Bibliografia
- [1] D. Aldous and J. Pitman, Two recursive decompositions of Brownian bridge related to the asymptotics of random mappings, in; Séminaire de Probabilités XXXIX, Lecture Notes in Math. No 1874, Springer, 2006, pp. 269-304.
- [2] J. Azéma and M. Yor, Etude d'une martingale remarquable, in: Séminaire de Probabilités XXIII, Lecture Notes in Math. No 1372, Springer, 1989, pp. 88-130.
- [3] M. T. Barlow, J. Pitman and M. Yor, Une extension multidimensionnelle de la loi de l'arc sinus, in: Séminaire de Probabilités XXIII, Lecture Notes in Math. No 1372, Springer, 1989, pp. 294-314.
- [4] J. Bertoin and J. F. Le Gall, The Bolthausen Sznitman coalescent and the genealogy of continuous branching process, Probab. Theory Related Fields 117 (2000), pp. 249-266.
- [5] L. Bondesson, Classes of infinitely divisible distributions and densities, Z. Wahrscheinlichkeitstheorie verw. Gebiete 57 (1981), pp. 39-71.
- [6] L. Bondesson, Generalized Gamma Convolutions and Related Classes of Distributions and Densities, Lecture Notes in Statist. 76, Springer, 1992.
- [7] L. Chaumont and M. Yor, Exercises in Probability. A Guided Tour from Measure Theory to Random Processes, via Conditioning, Camb. Ser. Stat. Probab. Math. (2003).
- [8] C. Donati-Martin, B. Roynette, P. Vallois and M. Yor, On constants related to the choice of the local time at 0, and the corresponding Itô measure for Bessel processes with dimension d = 2(1-α), 0 < α < 1, Studia Sci. Math. Hungar. (2007), to appear.
- [9] C. Donati-Martin and M. Yor, Some Krein Representations of some Particular Subordinators, Including the Gamma Process, Publ. Res. Inst. Math. Sci. Kyoto Univ. 42 (4) (2006), pp. 879-895.
- [10] D. Dufresne, The distribution of a perpetuity, with application to risk theory, and pension funding, Scand. Actuar. J. 1-2 (1990), pp. 39-79.
- [11] K. B. Erickson and R. A. Maller, Generalised Ornstein-Uhlenbeck processes and the convergence of Lévy integrals, in: Séminaire de Probabilités XXXVIII, Lecture Notes in Math. No 1857, Springer, 2005.
- [12] T. Fujita and M. Yor, On the supremum of some remarkable fragments of the Brownian trajectory, Probab. Math. Statist. 27 (1) (2007), to appear.
- [13] R. K. Getoor, The brownian escape process, Ann. Probab. 7 (1979), pp. 864-867.
- [14] Z. J. Jurek, Self-decomposability, perpetuity laws and stopping times, Probab. Math. Statist. 19 (2) (1999), pp. 413-419.
- [15] Z. J. Jurek and W. Vervaat, An integral representation for self-decomposable Banach space valued random variables, Z. Wahrscheinlichkeitstheorie verw. Gebiete 62 (1983), pp. 247-262.
- [16] J. Lamperti, An occupation time theorem for a class of stochastic processes, Trans. Amer. Math. Soc. 88 (1958), pp. 380-387.
- [17] N. N. Lebedev, Special Functions and their Applications, 2nd edition, Dover, Publications, Inc., New York 1965.
- [18] M. Loève, Probability Theory I, 4th edition, Text in Math., Springer, New York 1977.
- [19] E. Lukacs, Characteristic Functions, 2nd edition, Griffin C, London 1970.
- [20] B. Roynette, P. Vallois and M. Yor, Asymptotics for the distribution of lengths of excursions of a d-dimensional Bessel process (0 < d < 2), CRAS Paris, Ser. I, 343 (2006), pp. 201-208.
- [21] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Stud. Adv. Math. 68 (1999).
- [22] W. Schoutens, Lévy Processes in Finance, Wiley, 2005.
- [23] F. W. Steutel and K. Van Harn, Infinite Divisibility of Probability Distributions on the Real Line, M. Dekker, 2004.
- [24] D. V. Widder, The Laplace Transform, 2nd edition, Princeton Univ. Press, Princeton 1946.
- [25] M. Winkel, Electronic foreign exchange markets and passage events of independent subordinators, J. Appl. Probab. 42 (2005), pp. 138-152.
- [26] M. Yor, Exponentials of Brownian Motion and Related Processes, Springer Finance (2001).
- [27] V. M. Zolotarev, Mellin-Stieltjes transforms in probability theory, Teor. Veroyatnost. i Primenen. 2 (1957), pp. 444-469.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e07325c-e0e3-4bbd-a299-7d4c0749001d