PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nowe rozwiązania i modyfikacje najpopularniejszych polimerowych nośników substancji aktywnych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
New solutions and modifications of the most popular polymeric carriers of active substances
Języki publikacji
PL
Abstrakty
EN
The progress of medicine and cosmetology corresponds to the increase in the need for new drug design and delivery methods, due to the already common cancer risk, as well as other diseases, which are still difficult for curing. Regardless of the type of active substance and its final application, the selection and synthesis of the appropriate carrier is crucial to provide the pharmaceutics to the target with the controlled release for a set period of time, including the intelligent activity. Depending on the way the bioactive substance is bound to carriers in the drug delivery systems (DDS) they are classified onto: carriers that physically encapsulate them inside i.e. liposomes, solid lipid nanoparticles, nanostructural lipid carriers, nanoparticles (nanocapsules, nanospheres), micelles, and carriers that chemically bind the active substance, i.e. conjugates, polyplexes. The current studies are emphasized to achieve the most perfect improvement, which concerns the efficiency of encapsulation, the ability to deliver several compounds simultaneously or sequentially, the productive release, the elimination of side products, the replacement of synthetic polymers by natural, biodegradable, biocompatible and non-toxic polymers. These carriers are also developed in terms of sensitivity to stimuli (one or several simultaneously or sequentially activated) and adapted for combined therapy. Although the subject of active substance delivery with the use of carriers is already widely studied, these are still a needs for the designing of new or the enhancement of the already known DDS. Working on this issue there is hope that today still incurable diseases, neoplastic diseases, as well as the diagnosis of these diseases themselves, will be possible to control and treat in the future. This report presents the current state of the knowledge in the area of DDS, focusing on newly developed solutions in the last years.
Rocznik
Strony
481--501
Opis fizyczny
Bibliogr. 85 poz., rys.
Twórcy
  • Politechnika Śląska, Katedra Fizykochemii i Technologii Polimerów, ul. Ks. Marcina Strzody 9, 44-100 Gliwice
  • Politechnika Śląska, Katedra Fizykochemii i Technologii Polimerów, ul. Ks. Marcina Strzody 9, 44-100 Gliwice
Bibliografia
  • [1] T.M. Allen, P.R. Cullis, Science, 2004, 303, 1818.
  • [2] R. Duncan, Nat. Rev. Drug Discov., 2003, 2, 347.
  • [3] R. Duncan, M.J. Vicent, F. Greco, R.I. Nicholson, Endocr. Relat. Cancer, 2005, 12, S189.
  • [4] R. Haag, F. Kratz, Angew. Chem. Int. Ed. Engl., 2006, 45, 1198.
  • [5] P. Vasey, C. Twelves, S. Kaye, P. Wilson, R. Morrison, R. Duncan, A. Thomson, T. Hilditch, T. Murray, S. Burtles, J. Cassidy, Clin. Cancer Res., 1999, 5, 83.
  • [6] L.W. Seymour, D.R. Ferry, D. Anderson, S. Hesslewood, P.J. Julyan, R. Poyner, J. Doran, A.M. Young, S. Burtles, D.J. Kerr, J. Clin. Oncol., 2002, 20, 1668.
  • [7] W. Bokkel Huinink, J.M. Terwogt, R. Dubbelman, L. Valkenet, M. Zurlo, J. Shellens, J. Beijnen, Proceedings of the 3rd International Symposium On Polymer Therapeutics, London, UK, 1998, 12.
  • [8] V.R. Caiolfa, M. Zamal, A. Fiorini, E. Frigerio, R D’Argy, A. Ghigleri, M. Farao, F. Angelucci, A. Suarato, J. Control. Release, 2000, 65, 105.
  • [9] R. Greenwald, A. Pendri, C. Conover, C. Gilbert, R. Yang, J. Xia, J. Med. Chem., 1996, 39, 1938.
  • [10] C. Li, D. Yu, R. Newman, F. Cabral, L. Stephens, N. Hunter, L. Milas, S. Wallace, Cancer Res., 1998, 58, 2404.
  • [11] L. Liao, J. Liu, E.C. Dreaden, S.W. Morton, K.E. Shopsowitz, P.T. Hammond, J.A. Johnson, J. Am. Chem. Soc., 2014, 136, 5896.
  • [12] R. Rosario-Melendez, W. Yu, K.E. Uhrich, Biomacromolecules, 2013, 14, 3542.
  • [13] M.A. Ouimet, J. Griffin, A.L. Carbone-Howell, et al., Biomacromolecules, 2013, 14, 854.
  • [14] R. Rosario-Melendez, C.L. Harris, R. Delgado-Rivera, L. Yu, K.E. Uhrich, J. Control. Release, 2012, 162, 538.
  • [15] J.F. Lovell, T.W.B. Liu, J. Chen, G. Zheng, Nat. Mater., 2011, 10, 324.
  • [16] Q. Feng, R. Tong, Bioeng. Transl. Med., 2016, 1, 277.
  • [17] Y. Shen, E. Jin, B. Zhang, et al., J. Am. Chem. Soc., 2010, 132, 4259.
  • [18] R. Haag, F. Kratz, Angew. Chem. Int. Ed. Engl., 2006, 45, 1198.
  • [19] D. Bontempo, K.L. Heredia, B.A. Fish, H.D. Maynard, J. Am. Chem. Soc., 2004, 126, 15372.
  • [20] F. Lecolley, L. Tao, G. Mantovani, I. Durkin, S. Lautru, D.M. Haddleton, Chem. Commun., 2004, 18, 2026.
  • [21] B.S. Lele, H. Murata, K. Matyjaszewski, A.J. Russell, Biomacromolecules, 2005, 6, 3380.
  • [22] J. Liu, V. Bulmus, D.L. Herlambang, C. Barner-Kowollik, M.H. Stenzel, T.P. Davis, Angew. Chem., Int. Ed. 2007, 46, 3099.
  • [23] E.M. Pelegri-O’Day, H.D. Maynard, Acc. Chem. Res., 2016, 49, 1777.
  • [24] V.B. Morris, V. Labhasetwar, Biomaterials, 2015, 60, 151.
  • [25] Y. Cheng, R.C. Yumul, S.H. Pun, Angew. Chem. Int. Ed., 2016, 55, 12013.
  • [26] A. Ewe, A. Aigner, Non-Viral Gene Delivery Vectors, MIMB, 2016, 1445, 187.
  • [27] H. Yasar, D-K. Ho, C. De Rosi, J. Herrmann, S. Gordon, B. Loretz, C.M. Lehr, Polymers, 2018, 10, 252.
  • [28] C.M. Neuphytou, A.I. Constantinou, Biomed. Res. Int., 2015, 2015, 1.
  • [29] D. Nevozhay, U. Kańska, R. Budzyńska, J. Boratyński, Post. Hig. Med. Dosw., 2007, 61, 350.
  • [30] M. Alavi, N. Karimi, M. Safaei, Adv. Pharm. Bull., 2017, 7, 3.
  • [31] L. Sercombe, T. Veerati, F. Moheimani, S.Y. Wu, A.K. Sood, S. Hua, Front. Pharmacol., 2015, 6, 286.
  • [32] A. Gabizon, A. Dagan, D. Goren, Y. Barenholz, Z. Fuks, Cancer Res., 1982, 42, 4734.
  • [33] G. Bozzuto, A. Molinari, Int. J. Nanomedicine, 2015, 10, 975.
  • [34] P.S. Zangabada, S. Mirkiania , S. Shahsavaria , B. Masoudia, M. Masroora, H. Hamed, Z. Jafari, Y.D. Taghipour, H. Hashemi, M. Karimi, M.R. Hamblin, Nanotechnol. Rev., 2018, 7, 95.
  • [35] N. Pippa, A. Meristoudi, S. Pispas, C. Demetzos, Int. J. Pharm., 2015, 485, 374.
  • [36] D.C. Turner, D. Moshkelani, C.S. Shemesh, D. Luc, H. Zhang, Pharm. Res., 2012, 29, 2092.
  • [37] H. Guo, J-C. Kim, Int. J. Pharm., 2015, 494, 172.
  • [38] Y-B. Wei, Q. Tang, C-B. Gong, M.H-W. Lam, Anal. Chim. Acta, 2015, 900, 10.
  • [39] W. Zong, Y. Hu, Y. Su, N. Luo, X. Zhang, Q. Li, X. Han, J. Microencapsul., 2016, 33, 257.
  • [40] K. Kono, T. Kaiden, E. Yuba, Y. Sakanishi, A. Harada, J. Taiwan Inst. Chem. Eng., 2014, 45, 3054.
  • [41] C. Oerlemans, F. Nijsen, M. van Amersfoort, L. van Bloois, E. Heijman, P. Luijten, W. Mali, G. Storm, Eur. J. Pharm. Biopharm., 2011, 77, 458.
  • [42] Y. Li, R. Liu, J. Yang, G. Ma, Z. Zhang, X. Zhang, Biomaterials, 2014, 35, 9731.
  • [43] T. Lajunen, L. Viitala, L.S. Kontturi, T. Laaksonen, H. Liang, E. Vuorimaa-Laukkanen, T. Viitala, X. Le Guével, M. Yliperttula, L. Murtomäki, A. Urtti, J. Control. Release, 2015, 203, 85.
  • [44] J. Bokrova, I. Marova, P. Matouskova, R. Pavelkova, J. Nanopart. Res., 2019, 21, 49.
  • [45] Y. Okamoto, K. Taguchi, K. Yamasaki, M. Sakuragi, S. Kuroda, M. Otagiri, J. Pharm. Sci., 2018, 107, 436.
  • [46] N. Naseri, H. Valizadeh, P. Zakeri-Milani, Adv. Pharm. Bull., 2015, 5, 305.
  • [47] E.S. Farboud, S.A. Nasrollahi, Z. Tabbakhi, Int. J. Nanomedicine, 2011, 6, 611.
  • [48] V. Jenning, S.H. Gohla, J. Microencapsul., 2001, 18, 149.
  • [49] V.R. Sinha, S. Srivastava, H. Goel, V. Jindal, Int. J. Adv. Pharm. Sci., 2011, 1, 212.
  • [50] S.A. Wissing, K. Mäder, R.H. Müller, Int. Symp. Control. Release Bioact. Mater., 2000, 27, 311.
  • [51] A.A. Zardini, M. Mohebbi, R. Farhoosh, S. Bolurian, J. Food Sci. Technol., 2018, 55, 287.
  • [52] R. Rosiére, M. Van Woensel, M. Gelbcke, V. Mathieu, J. Hecq, T. Mathivet, M. Vermeersch, P. Van Antwerpen, K. Amighi, N. Wauthoz, Mol. Pharmaceutics, 2018, 15, 899.
  • [53] A.C.C. Vieira, L.L. Chaves, S. Pinheiro, S. Pinto, M. Pinheiro, S. C. Lima, D. Ferreira, B. Sarmento, S. Reis, Int. J. Pharm., 2018, 536, 478.
  • [54] E. Muntoni, K. Martina, E. Marini, M. Giorgis, L. Lazzarato, I.C. Salaroglio, C. Riganti, M. Lanotte, L. Battaglia, Pharmaceutics, 2019, 11, 65.
  • [55] Y. Ding, K.A. Nielsen, B.P. Nielsen, N.W. Boje, R.H. Muller, S.M. Pyo, Eur. J. Pharm. Biopharm., 2018, 128, 10.
  • [56] S. Serini, R. Cassano, P.A. Corsetto, A.M. Rizzo, G. Calviello, S. Trombino, Int. J. Mol. Sci., 2018, 19, 586.
  • [57] M. Suñé-Pou, S. Prieto-Sánchez, Y. El Yousfi, A. Nardi-Ricart I. Nofrerias-Roig, FarmaJournal, 2019, 4, 2015.
  • [58] J.J. Stelzner, M. Behrens, S.E. Behrens, K. Mader, Vaccine, 2018, 36, 2314.
  • [59] K. Glaubitt, M. Ricci, S. Giovagnoli, AAPS Pharm. Sci. Tech., 2019, 20, 19.
  • [60] S.M.T. Gharibzaheidi, S.M. Jafari, Nanoencapsulation Technologies for the Food and Nutraceutical Industries, Elsevier Ltd.: Academic Press, London, 2017.
  • [61] F. Ji, J. Li, Z. Qin, B. Yang, E. Zhang, D. Dong, J. Wang, Y. Wen, L. Tian, F. Yao, Carbohydr. Polym., 2017, 177, 86.
  • [62] J. Zhang, X. Ren, X. Tian, P. Zhang, Z. Chen, X. Hu, X. Mei, Colloids Surf. B Biointerfaces, 2019, 173, 654.
  • [63] R. Xie, S. Lian, H. Peng, C. OuYang, S. Li, Y. Lu, X. Cao, C. Zhang, J. Xu, L. Jia, Mol. Pharmaceutics, 2019, 16, 2235.
  • [64] A.O. Elzoghby, S.A. El-Lakany, M.W. Helmy, M.M. Abu-Serie, N.A. Elgindy, Nanomedicine, 2017, 12, 2785.
  • [65] H. Zhang, S. Peng, S. Xu, Z. Chen, RSC Adv., 2016, 6, 104731.
  • [66] H. Li, Y. Deng, J. Liang, Y. Dai, B. Li, Y. Ren, X. Qiu, C. Li, BioResources, 2016, 11, 3073.
  • [67] T. Woraphatphadung, W. Sajomsang, T. Rojanarata, T. Ngawhirunpat, P. Tonglairoum, P. Opanasopit, AAPS Pharm. Sci. Tech., 2018, 19, 991.
  • [68] Q. Chen, J. Zheng, X, Yuan, J. Wang, L. Zhang, Mater. Sci. Eng. C, 2018, 82, 1.
  • [69] D. Huang, Y. Zhuang, H. Shen, F. Yang, X. Wang, D. Wu, Mater. Sci. Eng. C, 2018, 82, 60.
  • [70] T. Luo, J. Han, F. Zhao, X. Pan, B. Tian, X. Ding, J. Zhang, Carbohydr. Polym., 2019, 215, 8.
  • [71] G. Yu, Q. N, Z. Mo, S. Tang, Artif. Cells Nanomed. Biotechnol., 2019, 47, 1476.
  • [72] X. Wan, J.J. Beaudoin, N. Vinod, Y. Min, N. Makita, H. Bludau, R. Jordan, A. Wang, M. Sokolsky, A.V. Kabanov, Biomaterials, 2019, 192, 1.
  • [73] X. Guo, Z. Zhao, D. Chen, M. Qiao, F. Wan, D. Cun, Y. Sun, M. Yang, Asian J. Pharm., 2019, 14, 78.
  • [74] J. Odrobińska, D. Neugebauer, Express Polym. Lett, 2019, 13, 806.
  • [75] F. Hao, R.J. Lee, C. Yang, L. Zhong, Y. Sun, S. Dong, Z. Cheng, L. Teng, Q. Meng, J. Lu, J. Xie, L. Teng, Pharmaceutics, 2019, 11, 92.
  • [76] M. Ripoll, P. Neuberg, J.S. Remy, A. Kichler, Cationic Photopolymerized Polydiacetylenic (PDA) Micelles for siRNA Delivery, Humana Press, New York, 2019.
  • [77] Y. Dai, X. Chen, X. Zhang, Polym. Chem., 2019, 10, 34.
  • [78] H. Wei, X-Z. Zhang, Y. Zhou, S-X. Cheng, R-X. Zhuo, Biomaterials, 2006, 27, 2028.
  • [79] X. Liang, V. Kozlovskaya, C.P. Cox, Y. Wang, M. Saeed, E. Kharlampieva, J. Polym. Sci. A, 2014, 52, 2725.
  • [80] R. Laga, O. Janouskova, K. Ulbrich, R. Pola, J. Blazkova, S.K. Filippov, T. Etrych, M. Pechar, Biomacromolecules, 2015, 16, 2493.
  • [81] D. Wang, J. Wang, H. Huang, Z. Zhao, P.A. Gunatillake, X. Hao, Eur. Polym. J., 2019, 113, 267.
  • [82] J.X. Ding, L. Zhao, D. Li, C.S. Xiao, X.L. Zhuang, X.S. Chen, Polym. Chem., 2013, 4, 3345.
  • [83] H. Shen, Y. Xia, Z. Qin, J. Wu, L. Zhang, Y. Lu, X. Xia, W. Xu, Polym. Sci. Pol. Chem., 2015, 53, 750.
  • [84] M.N. Ganivada, P. Kumar, P. Kanjilal, H. Dinda, J. Das Sarma, R. Shunmugam, Polym. Chem., 2016, 7, 4237.
  • [85] W.D. Ke, J.J. Li, K.J. Zhao, Z.S. Zha, Y. Han, Y.H. Wang, W. Yin, P. Zhang, Z.S. Ge, Biomacromolecules, 2016, 17, 3268.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e05a015-05de-4e28-b2d6-ce2e6b3a595a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.