PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of Earth Rotation Parameters With the Use of Rapid Products From IGS, Code and GFZ Data Centres Using ARIMA and Kriging - A Comparison

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the Second Earth Orientation Parameters Prediction Comparison Campaign (2nd EOP PCC) Workshop, online, February 15-16, 2022
Języki publikacji
EN
Abstrakty
EN
Real-time prediction of Earth Orientation Parameters is necessary for many advanced geodetic and astronomical tasks including positioning and navigation on Earth and in space. Earth Rotation Parameters (ERP) are a subset of EOP, consisting of coordinates of the Earth’s pole (PMx, PMy) and UT1-UTC (or Length of Day - LOD). This paper presents the ultra-short-term (up to 15 days into the future) and short-term (up to 30 days into the future) ERP prediction using geostatistical method of ordinary kriging and autoregressive integrated moving average (ARIMA) model. This contribution uses rapid GNSS products EOP 14 12h from IGS, CODE and GFZ and also IERS final products - IERS EOP 14 C04 12h (IAU2000A). The results indicate that the accuracy of ARIMA prediction for each ERP is better for ultra-short prediction. The maximum differences between methods for first few days of 15-day predictions are around 0.32 mas (PMx), 0.23 mas (PMy) and 0.004 ms (LOD) in favour of ARIMA model. The maximum differences of Mean Absolute Prediction Errors (MAPEs) on the last few days of 30-day predictions are 1.91 mas (PMx), 0.30 mas (PMy) and 0.026 ms (LOD) with advantage to kriging method. For all ERPs the differences of MAPEs for time series from various analysis centres are not significant and vary up to maximum value of around 0.05 mas (PMx), 0.04 mas (PMy) and 0.005 ms (LOD).
Rocznik
Strony
275--289
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Department of Integrated Geodesy and Cartography, Faculty of Geo-Data Science, Geodesy, and Environmental Engineering, AGH University of Science and Technology, Krakow, Poland
autor
  • Department of Integrated Geodesy and Cartography, Faculty of Geo-Data Science, Geodesy, and Environmental Engineering, AGH University of Science and Technology, Krakow, Poland
autor
  • Department of Integrated Geodesy and Cartography, Faculty of Geo-Data Science, Geodesy, and Environmental Engineering, AGH University of Science and Technology, Krakow, Poland
Bibliografia
  • Akaike H., (1998) Information Theory and an Extension of the Maximum Likelihood Principle, In: Parzen, E., Tanabe, K., Kitagawa, G. (eds) Selected Papers of Hirotugu Akaike. Springer Series in Statistics, Springer, New York, NY. https://doi.org/10.1007/978-1-4612- 1694-0_15.
  • Akyilmaz O., Kutterer H., Shum C., Ayan T., (2011) Fuzzy-wavelet based prediction of earth rotation parameters, Applied Soft Computing, 11(1):837-841, https://doi.org/10.1016/j.asoc.2010.01.003.
  • Box, G.E.P. and Jenkins, G.M. (1976) Time Series Analysis: Forecasting and Control, Holden Day San Francisco.
  • Cressie N.A.C. (1993) Statistics for spatial data, John Wiley & Sons, New York.
  • Dick W. R. and Thaller D. (eds.) IERS Annual Report 2018 (2020) International Earth Rotation and Reference Systems Service, Central Bureau. Frankfurt am Main: Verlagdes Bundesamts für Kartographie und Geodäsie, 207 p., ISBN 978-3-86482-136-3.
  • Dill, R., Dobslaw, H., Thomas, M. (2019): Improved 90-day Earth orientation predictions from angular momentum forecasts of atmosphere, ocean, and terrestrial hydrosphere. - Journal of Geodesy, 93, 3, pp. 287-295. doi: http://doi.org/10.1007/s00190-018-1158-7.
  • Gambis D, Luzum B., (2011) Earth rotation monitoring, UT1 determination and prediction, Metrologia; 48:165-70.
  • Kalarus M., Schuh H., Kosek W., Akyilmaz O., Bizouard Ch., Gambis D., Gross, B R.. Jovanovi´c, Kumakshev S., Kutterer H., Mendes Cerveira P. J., Pasynok S., Zotov L., (2010) Achievements of the Earth Orientation Parameters prediction comparison campaign, Journal of Geodesy, 84:587-596.
  • Kosek W., Kalarus M., Niedzielski T., (2007) Forecasting Of the Earth Orientation Parameters - Comparison of Different Algorithms, Journées Systèmes de Référence Spatio-temporels, Observatoire de Paris, 17-19 September 2007.
  • Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., Shin, Y. (1992) Testing the null hypothesis of stationarity against the alternative of a unit root, Journal of Econometrics. 54 (1-3): 159-178, https://doi.org/10.1016/0304-4076(92)90104-Y.
  • Lei Y., Guo M., Cai. H, Hu D., Zhao D., (2015) Prediction of Length-of-day Using Gaussian Process Regression, The Journal of Navigation, 68:563-575, https://doi.org/10.1017/S0373463314000927.
  • Liao D.C., Wang Q.J., Zhou Y.H., Liao X.H., Huang C.L., (2012) Long-term prediction of the Earth Orientation Parameters by the artificial neural network technique, Journal of Geodynamics Volume 62, Pages 87-92, ISSN 0264-3707, https://doi.org/10.1016/j.jog.2011.12.004.
  • Ligas, M., (2022), Comparison of kriging and least-squares collocation – Revisited, Journal of Applied Geodesy, vol. 16, no. 3, 2022, pp. 217-227. https://doi.org/10.1515/jag-2021-0032.
  • Linnet. K. (1990). Estimation of the linear relationship between the measurements of two methods with proportional errors. Statist. Med.. 9: 1463-1473. https://doi.org/10.1002/sim.4780091210.
  • Luo, J., Chen, W., Ray, J., Li J., (2022), Short-Term Polar Motion Forecast Based on the HoltWinters Algorithm and Angular Momenta of Global Surficial Geophysical Fluids. Surv Geophys. https://doi.org/10.1007/s10712-022-09733-0.
  • Michalczak M., Ligas M., (2021) Kriging-based prediction of the Earth's pole coordinates, Journal of Applied Geodesy, vol. 15, no. 3, pp. 233-241, https://doi.org/10.1515/jag-2021-0007.
  • Michalczak M., Ligas M. (2022) The (ultra) short term prediction of length-of-day using kriging, Advances in Space Research, https://doi.org/10.1016/j.asr.2022.05.007.
  • Modiri S., Belda S., Hoseini M., Heinkelmann R., Ferrándiz J. M., Schuh H., (2020) A new hybrid method to improve the ultra-short-term prediction of LOD, Journal of Geodesy 94:23.
  • Nastula J., Chin T. M., Gross R., Śliwińska J., Wińska M., (2020) Smoothing and predicting celestial pole offsets using a Kalman filter and smoother, Journal of Geodesy 94:29.
  • Niedzielski T., Kosek W., (2008) Prediction of UT1-UTC, LOD and AAM χ3 by combination of least-squares and multivariate stochastic methods, J Geod 82:83-92.
  • Okhotnikov G., Golyandina N. (2019) EOP Time Series Prediction Using Singular Spectrum Analysis" RWTH Aahen University.
  • Passing H. Bablok W.. (1983) A new biometrical procedure for testing the equality of measurements from two different analytical methods. Application of linear regression procedures for method comparison studies in clinical chemistry. Part I. J Clin Chem Clin Biochem. Nov;21(11):709-20. doi: 10.1515/cclm.1983.21.11.709. PMID: 6655447.
  • Petit G and Luzum B (eds.). IERS Conventions (2010), IERS Technical Note 36, Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie. 179 pp., ISBN 3-89888- 989-6.
  • Schuh H., Ulrich M., Egger D., Müller J., Schwegmann W. (2002) Prediction of Earth Orientation Parameters by Artificial Neural Networks, Journal of Geodesy, 76(5), 247-258, https://doi.org/10.1007/s00190-001-0242-5.
  • Wu F., Chang G., Deng K., (2019) One-step method for predicting LOD parameters based on LS+AR model", Journal of Spatial Science, 66:2, 317-328, https://doi.org/10.1080/14498596.
  • Zotov, Leonid & Bizouard, Ch. (2018). Escargot Effect and the Chandler Wobble Excitation, Journal of Physics: Conference Series, 955, 012033, doi: 10.1088/1742-6596/955/1/012033.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e057045-6dcb-44bf-9dc9-8e7eedba8821
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.