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ABSTRACT. Real-time prediction of Earth Orientation Parameters is necessary for many 

advanced geodetic and astronomical tasks including positioning and navigation on Earth and 

in space. Earth Rotation Parameters (ERP) are a subset of EOP, consisting of coordinates of 

the Earth’s pole (PMx, PMy) and UT1-UTC (or Length of Day – LOD). This paper presents 

the ultra-short-term (up to 15 days into the future) and short-term (up to 30 days into the 

future) ERP prediction using geostatistical method of ordinary kriging and autoregressive 

integrated moving average (ARIMA) model. This contribution uses rapid GNSS products 

EOP 14 12h from IGS, CODE and GFZ and also IERS final products – IERS EOP 14 C04 

12h (IAU2000A). The results indicate that the accuracy of ARIMA prediction for each ERP is 

better for ultra-short prediction. The maximum differences between methods for first few days 

of 15-day predictions are around 0.32 mas (PMx), 0.23 mas (PMy) and 0.004 ms (LOD) in 

favour of ARIMA model. The maximum differences of Mean Absolute Prediction Errors 

(MAPEs) on the last few days of 30-day predictions are 1.91 mas (PMx), 0.30 mas (PMy) and 

0.026 ms (LOD) with advantage to kriging method. For all ERPs the differences of MAPEs 

for time series from various analysis centres are not significant and vary up to maximum 

value of around 0.05 mas (PMx), 0.04 mas (PMy) and 0.005 ms (LOD). 
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1. INTRODUCTION 

Earth Orientation Parameters (EOP), i.e., coordinates of the Earth’s pole (PMx, PMy), 

celestial pole offsets (dX, dY), and UT1-UTC describe the irregularities in the Earth’s 

rotation. An additional parameter that is the first negative time derivative from the UT1-UTC 

is the Length of Day (LOD) (Modiri et al., 2020). In this contribution, a subset of EOP, Earth 

Rotation Parameters (ERP), consisting of Earth’s pole coordinates (PMx, PMy) and UT1-

UTC (LOD) is subject to prediction. 

The knowledge of EOP is essential for transformation between celestial reference frame 

(CRF) and terrestrial reference frame (TRF) (Gambis and Luzum, 2011), which enables 

precise positioning in space and on the Earth's surface, navigation, time-keeping and 

positional astronomy. 
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EOP are determined by space geodetic techniques such as VLBI (Very Long Baseline 

Interferometry), DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite), 

SLR (Satellite Laser Ranging) and GNSS (Global Navigation Satellite System), and are 

finally combined into a single solution (Petit and Luzum, 2010). This combination of 

techniques enables to determine polar coordinates with the accuracy of app. 50 μas or better 

and 10 μs in case of LOD (Dick and Thaller, 2020). 

Complexity of measuring and data processing involved in EOP determination forces their 

prediction since it is impossible to obtain them in real-time mode.  

The long EOP time series are published with latency by International Earth Rotation and 

Reference System Service (IERS) and many individual analysis centres or services (IERS 

Annual Report 2018). Therefore, in operational settings, this gap must be filled with rapid 

products, e.g., IGS (International GNSS Service), CODE (Center for Orbit Determination in 

Europe) or GFZ (German Research Centre for Geosciences). This may also be done by basing 

on rapid products published by IERS, e.g., Daily Rapid EOP Data. 

A plenty of prediction methods have been applied to EOP prediction through the years; the 

following list is by no means exhaustive: least-squares collocation (Hozakowski, 1989), 

artificial neural networks (Schuh et al., 2002; Liao et al., 2012), autocovariance prediction 

(Kosek, 2002), autoregression (Kosek et al., 2007), combination of least-squares and 

multivariate stochastic methods (Niedzielski and Kosek, 2008), wavelets and fuzzy inference 

systems (Akyilmaz et al., 2011), extreme learning machine (Lei et al., 2015), Gaussian 

process regression (Lei et al., 2015), combination of least-squares extrapolation and auto-

regressive modelling of EAM (Dill et al., 2019), singular spectrum analysis (Okhotnikov and 

Golyandina, 2019), one-step forecasting method based on the LS+AR (Wu et al., 2019), 

combination of singular spectrum analysis and Copula-based analysis (Modiri et al., 2020) 

and Kalman filter (Nastula et al., 2020), combination of Holt–Winters algorithm and angular 

momenta of global surficial geophysical fluids (Luo et al., 2022). 

This study is intended in ultra-short-term (up to 15 days into the future) and short-term (up to 

30 days into the future) ERP predictions using geostatistical method of ordinary kriging and 

autoregressive integrated moving average (ARIMA) model. Rapid GNSS products EOP 14 

12h from IGS, CODE and GFZ and also IERS final products (IERS EOP 14 C04 

12h(IAU2000A)) are used and the results are compared. For all the time series and data 

centres the first ERP prediction was made for 1 January 2017 (MJD 57754.5) and the last for 

15 April 2022 (MJD 59684.5) with 1 day shift. 

2. METHODOLOGY 

2.1. Statistical agreement between final IERS and rapid CODE, IGS and GFZ products 

This section attempts to statistically examine the agreement between ERP final products 

delivered by IERS and rapid ones delivered by CODE, IGS and GFZ. To accept or reject a 

hypothesis of equality, for a particular ERP in pairwise combinations of data centres, three 

techniques are used, i.e., matched-pair t-test, Deming regression (DR), and Passing-Bablok  

regression (PBR). The mentioned techniques are frequently applied in method comparison 

studies (e.g., in medicine or clinical chemistry) to search for biases/differences (constant/fixed 

or proportional) between two measurement methods (or measuring devices). In this 

contribution, a single pair of ERP coming from IERS (reference) and one of three (IGS, 

CODE, GFZ) centres on a given MJD is considered as a measurement pair. Matched-pair t-

test evaluates whether the differences between variables representing two measurement 

methods are statistically different from a given constant (to test for equality the constant is 
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zero); hence it is able to detect only a constant bias. The other two methods quantify and 

assess deviations from the line of equality (perfect agreement between measurements X and Y 

given by different methods or devices), i.e.,  

Y = X (1) 

by fitting a straight line,   

Y = aX + b (2) 

Hence, they are able to detect both fixed (intercept = b) and proportional (slope = a) biases. 

Deming regression is a method of fitting a straight line to scattered 2D data in an errors-in-

variables framework, i.e., both the explanatory variable X and the response variable Y in (2) 

are considered to be erroneous. In DR, it is assumed that the variance ratio of the 

measurement errors 𝜆 in X and Y is constant; for 𝜆 = 1, DR yields the same results as 

orthogonal regression (in this study, this assumption was adopted). To assess statistical 

significance of slope and intercept, a pair of hypotheses is tested, i.e., H0: a = 1 vs. H1: a ≠ 1 

and H0: mean Y - mean X = 0 vs. H1: mean Y - mean X ≠ 0 to decide whether methods may 

be considered as equivalent (Linnet 1990).  

Passing - Bablok regression is another technique of testing agreement and detecting a 

potential systematic bias between methods. It is a non-parametric and robust regression 

method where a slope a in (2) is the median of all slopes computed between any two points 

excluding cases of a = 0 or a = inf and an intercept b in (2) is calculated as b = median (yi − a 

xi). For both parameters, the 1-α (usually 0.95) confidence intervals (CI) are inferred. If 0 is 

within the CI of b, and 1 is included in the CI of a, then according to Passing and Bablok 

(1983), one may infer that Y = X and the two methods are comparable. On the other hand, if 0 

is not in the CI of b, there is a systematic difference (bias), and if 1 is not in the CI of a, then 

there is a proportional difference (bias) between the two methods. 

Table 1. Matched-pair t – test between final IERS and rapid CODE, IGS and GFZ ERP products 

 
ERP Mean difference [“ / s] CI lower limit [“ / s] CI upper limit [“ / s] Decision 

IE
R

S
-C

O
D

E
 

 

PMx -0,00002657 -0,00002828 -0,00002486 Reject 

PMy -0,00000364 -0,00000493 -0,00000234 Reject 

LOD -0.00000790 -0.00000829 -0.00000751 Reject 

IE
R

S
-I

G
S

 

 

PMx -0,00001092 -0,00001240 -0,00000945 Reject 

PMy -0,00000896 -0,00000996 -0,00000796 Reject 

LOD 0.00000006 -0.00000021 0.00000034 Accept 

IE
R

S
-G

F
Z

 

 

PMx -0,00000536 -0,00000719 -0,00000353 Reject 

PMy -0,00002593 -0,00002780 -0,00002406 Reject 

LOD -0.00001515 -0.00001561 -0.00001468 Reject 

*Confidence level 1- α = 0.95 for CI 
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Table 2. Deming regression, final IERS vs rapid CODE, IGS and GFZ ERP products 

 
ERP Slope Intercept [“ / s] Decision 

IE
R

S
-C

O
D

E
 PMx 

1.00003832 

t = 3.04479892; p = 0.00235965 (R) 

0.00002657 

t = 30.52319805; p = 0.00000000 (R) 
Reject 

PMy 
0.99999094 

t = -0.89663540; p = 0.37002469 (A) 

0.00000364 

t = 5.50072407; p = 0.00000004 (R) 

Reject 

(partially satisfied) 

LOD 
1.00089118 

t = 3.15274029; p = 0.00164218 (R) 

0.00000790 

t = 39.80528652; p = 0.00000000 (R) 
Reject 

IE
R

S
-I

G
S

 

PMx 
0.99998689 

t = -1.17060095;  p = 0.24190291 (A) 

0.00001092 

t = 14.52462344; p = 0.00000000 (R) 

Reject 

(partially satisfied) 

PMy 
0.99996457 

t = -4.60782629; p = 0.00000433 (R) 

0.00000896 

t = 17.59538975; p = 0.00000000 (R) 
Reject 

LOD 
1.00020499 

t = 1.16628098; p = 0.24364414 (A) 

-0.00000006 

t = -0.46240588; p = 0.64384211 (A) 
Accept 

IE
R

S
-G

F
Z

 

PMx 
1.00008012 

t = 5.82033049; p = 0.00000001 (R) 

0.00000536 

t = 5.74191721; p = 0.00000001 (R) 
Reject 

PMy 
1.00006274 

t = 4.07633940; p =0.00004760 (R) 

0.00002593 

t = 27.24852927; p = 0.00000000 (R) 
Reject 

LOD 
0.99916958 

t = -2.62639779; p = 0.00869725 (R) 

0.00001515 

t = 63.59095306; p = 0.00000000 (R) 
Reject 

*Significance level α = 0.025 for hypothesis testing; (R), (A) denote Reject or Accept (no ground to 

reject) in separate hypothesis testing for significance of either a slope or an intercept; decision in the 

last column concerns the overall hypothesis of equivalence of methods; t is the value of t-statistics 

which take the form: (slope) t = (a – 1)/SE(a) and (intercept) t = (mean Y – mean X)/SE(mean Y – 

mean X) where the standard errors (SE) were calculated using the jackknife method, p is a p-value, 

when less than adopted α  = 0.025 then it indicates strong evidence against the null hypothesis. 
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Table 3. Passing-Bablok regression, final IERS vs rapid CODE, IGS and GFZ ERP products 

 ERP Slope (a / CI) Intercept (b / CI) [“ / s] Decision 

IE
R

S
-C

O
D

E
 

 

PMx 
1.0000432 

(1.00002075; 1.00006572) (R) 

0.0000170 

(0.00001399; 0.00001988) (R) 
Reject 

PMy 
1.00000000 

(0.99997632; 1.00001322) (A) 

0.00000200 

(-0.00000264; 0.00001059) (A) 
Accept  

LOD 
1.00100267 

(1.00045893; 1.00155259) (R) 

0.00000759 

(0.00000738; 0.00000778) (R) 
Reject 

IE
R

S
-I

G
S

 

 

PMx 
0.99999126 

(0.99997446; 1.00000467) (A) 

0.00000545 

(0.00000385; 0.00000720) (R) 

Reject 

(partially satisfied) 

PMy 
0.99996812 

(0.99995422; 0.99998202) (R) 

0.00001770 

(0.00001268; 0.00002273) (R) 
Reject 

LOD 
1.00029612 

(1.00000000; 1.00063857) (A)  

-0.00000018 

(-0.00000026; -0.00000010) (R) 

Reject 

(partially satisfied) 

IE
R

S
-G

F
Z

 

 

PMx 
1.00006766 

(1.00004284; 1.00009256) (R) 

-0.00000174 

(-0.00000476; 0.00000115) (A) 

Reject 

(partially satisfied) 

PMy 
1.000052582 

(1.00002540; 1.00008007) (R) 

0.00000175 

(-0.00000836; 0.00001128) (A) 

Reject 

(partially satisfied) 

LOD 
0.99948267  

(0.99882881; 1.00013364) (A) 

0.00001554 

(0.00001524; 0.00001582) (R) 

Reject 

(partially satisfied) 

*Confidence level 1- α = 0.95 for CI; (R), (A) denote Reject or Accept (no ground to reject) in 

separate hypothesis testing for significance of either a slope or an intercept; decision in the last column 

concerns the overall hypothesis of equivalence of methods 

Although the Passing-Bablok regression gives uncertain results (but very close to overall 

acceptance), the remaining two methods indicate statistically significant agreement (no 

biases) for the pair IERS-IGS in case of LOD time series, thus they may be considered as 

equivalent. This will be also visible when results of forecasts will be exposed. On the other 

hand, Passing-Bablok regression accepts hypotheses of complete agreement (no proportional 

and fixed biases) for the pair IERS-CODE in case of PMy; Deming regression accepts only 

H0 for the slope (a = 1) and rejects H0 for the intercept, hence fixed bias may be present. The 

value of the intercept agrees with the bias (mean difference) estimated for the matched-pair t-

test. For the remaining pairs of data centres and ERPs, the methods detect either both 

proportional and fixed biases (rejection of two hypotheses) or either of the two. Despite the 

detection of differences between products belonging to IERS and considered data centres, it is 

worth noting that easily interpretable fixed biases (shifts) are of the order of accuracy in 

determining the Earth's Rotation Parameters. Thus, so far, they may be considered 

insignificant when confronted with the accuracy of the forecast. In addition, the results may 

depend on the analysed time span 1 January 2017 (MJD 57754.5) – 15 April 2022 (MJD 

59684.5).    

2.2. Solid Earth tides  

The LOD time series includes periodic effects such as the impact of solid Earth tides with 

periods varying from 5 days up to 18.6 years. These tidal effects were first removed from 
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LOD time series by using a model recommended by IERS Conventions (2010) (Petit and 

Luzum, 2010) which is given by  

{
 
 

 
 𝑑𝐿𝑂𝐷 =∑ 𝐵𝑖

′𝑐𝑜𝑠𝜉𝑖 + 𝐶𝑖
′𝑠𝑖𝑛𝜉𝑖

62

𝑖=1

𝜉𝑖 =∑ 𝑎𝑖𝑗𝛼𝑗
5

𝑗=1

 (3) 

where: values of B'i, C'i, aij, and αj are given in Chapter 8 of the IERS Conventions (2010) 

(Petit and Luzum, 2010). 

2.3. Time – frequency analysis 

In order to determine the number of periodic components in the prediction model, a time-

frequency analysis of the length-of-day and polar motion time series based on IERS EOP 14 

C04 12h (IAU2000A) was performed. Continuous Wavelet Transform with Morlet wavelets 

was used for this purpose with a time span of approx. 22 years (MJD 51544.5 – 59684.5). In 

case of LOD, the analysis resulted in a spectrogram with clearly visible lines corresponding to 

three periods of 0.5, 1 and 8.3 years (Figure 1). Several weaker components of periods 

between 3.5 and 5.5 years (5e-4 1/day, 8e-4 1/day) with increasing amplitude over time are 

also evident. Signals with lower frequencies visible on the spectrogram were treated as 

artefacts due to the length of the analysed time interval (22 years) and were not included in 

the prediction model. 

 

Figure 1. Spectrogram for LOD 

The PMx and PMy time series were analysed in a similar manner, obtaining spectrograms 

with apparent domination of two components with periods of 366 and 431 (annual and 

Chandler oscillations). Starting at around 57000 MJD, the second component shows 

decreasing amplitude in both the PMx and PMy series (Figures 2 and 3). A similar effect has 

been observed previously around 1920-1930 and connected with the Chandler wobble phase 

change (Zotov and Bizouard, 2018). 
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Figure 2. Spectrogram for PMx 

 

Figure 3. Spectrogram for PMy 

2.4. Prediction model 

Both LOD and pole coordinates are decomposed into linear and periodic components. The 

prediction model consists of mentioned components (extrapolated into the future) and 

residuals (obtained in the prediction process), and is given as follows: 

𝐸𝑅𝑃̂(𝑡𝑝) = 𝑎̂0 + 𝑎̂1𝑡𝑝 +∑𝑏̂𝑖 sin(𝑐̂𝑖𝑡𝑝 + 𝑑̂𝑖) + [𝑑𝐿𝑂𝐷] + 𝜀̂(𝑡𝑝)

𝑛

𝑖=1

 (4) 

where 𝐸𝑅𝑃̂ is a predicted ERP; tp is the prediction time moment; 𝑎̂0, 𝑎̂1 are the estimated 

linear trend coefficients; n is the number of terms in the series; 𝑏̂𝑖, 𝑐̂𝑖, 𝑑̂𝑖 are the estimated 

amplitudes, frequencies, and phase constants for i-th sine term, respectively; dLOD are tidal 

corrections (occur only in LOD prediction) and 𝜀̂ stands for the predicted residual. 
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2.5. Ordinary kriging 

Ordinary kriging, adapted to time series prediction herein, is a linear predictor of an unknown 

random quantity Z at a time instant t0 (here residual PM and LOD processes), i.e.,   

𝑍̂(𝑡𝑜) = 𝛌
𝑇𝐙(𝑡) (5) 

where Z(t) are observed data.  

It is optimal, in the sense of Best Linear Unbiased Prediction – BLUP (and Best Linear 

Unbiased Estimator – BLUE), if the mean value of a random process is an unknown constant 

(Cressie, 1993). Unknown mean value is eliminated from the prediction procedure by 

unbiasedness condition of summing up weights to unity, i.e., 𝛌𝑇𝐮 = 1, and is internally 

estimated from the sample (Ligas, 2022). Optimal coefficients  (kriging weights), in the 

sense of unbiasedness and minimization of mean squared prediction error, are computed from 

the system of equations: 

[
𝛀 𝐮
𝐮𝑇 0

] [
𝛌
𝜅
] = [

𝛚0

1
] (6) 

where  is a covariance matrix of observations (observations – observations), 0 stands for 

a covariance vector between observations and a target location to be predicted (observations – 

prediction), and u is a vector of ones.  

Additional unknown  (Lagrange multiplier) in (6) results from the unbiasedness condition. 

Ordinary kriging offers a measure of prediction quality (minimized mean squared prediction 

error 2
OK) which may be expressed as 

𝜎𝑂𝐾
2 = 𝜎2 − 𝛌𝑇𝛚0 − 𝜅 (7) 

where 2 is a variance of observations. 

Kriging is a two-step procedure. Firstly, the temporal structure of a random process is inferred 

(from data and a priori knowledge if available) and contained in a semivariance or covariance 

function. Then, the covariance structure stored in  and 0 is employed to solve for kriging 

weights in (6) and to assess the quality of prediction in (7).  

2.6. ARIMA 

This study also uses autoregressive integrated moving average (ARIMA) model, which is the 

combination of autoregressive model, moving average model, and differencing process 

(integrated part). This model makes possible to obtain greater flexibility in fitting the model to 

the actual time series (Box and Jenkins, 1976). The model mentioned above can be applied 

not only on a stationary time series but also on series that behave in a non-stationary way. In 

order to check the stationarity of the time series, the Kwiatkowski–Phillips–Schmidt–Shin 

(KPSS) test was used (Kwiatkowski et al., 1992). ARIMA model is defined as follows (Box 

and Jenkins, 1976): 

𝑋̂𝑡
𝑑 = 𝑐 +∑𝜑𝑖

𝑝

𝑖=1

𝑋𝑡−𝑖
𝑑 +∑𝜃𝑖𝜀𝑡−𝑖

𝑞

𝑖=1

+ 𝜀𝑡 (8) 

where 𝑋𝑡
𝑑 is the predicted value; c is a constant; p is the order of autoregressive process; φ1 

… φp are parameters of the model; d is the degree of differencing; 𝑋𝑡−𝑖
𝑑  are the differenced 

past series values; q is the order of moving average process; θ1 … θq are parameters of the 

model; εt-i are the past white noise error terms; and εt is the white noise. 

ARIMA model is generally denoted as ARIMA (p, d, q).  
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3. DATA DESCRIPTION AND PROCESSING 

In this contribution, rapid EOP 14 12h (IGS, CODE, and GFZ) and final EOP 14 C04 12h 

(IERS) daily products were used to predict ERP. The obtained predictions cover the time 

interval from 1 January 2017 (MJD 57754.5) to 15 April 2022 (MJD 59684.5) for all 

evaluated ERP time series/data centres. 

Prediction procedure is based on that one described in Michalczak and Ligas (2021) and 

Michalczak and Ligas (2022) set of parameters such as the number of the nearest neighbors 

(NN) for kriging, number of observations for structure function estimation, the time span (TS) 

necessary to estimate parameters of a linear trend and number of periodic components. The 

TS parameter for PMx and PMy is equal to 6.4 yrs and for LOD 9.2 yrs; NN for PMx and 

PMy equals to 10 immediate neighbors and for LOD it is equal to 25.     

In case of ARIMA(p, d, q) model, the best set of parameters p and q was obtained by means 

of corrected Akaike Information Criterion (AICc) (Akaike, 1998). The loop with AICc 

criterion was run over the number of p and q varying from 1 to 5; the best set of parameters 

was selected and then a prediction was made based on them. For each 15-day and 30-day ERP 

prediction, the best set of p and q was selected separately. Parameter d determines a degree of 

differencing to be applied in order to transform a non-stationary time series into the stationary 

one in the mean sense. Stationarity of each ERP time series was checked using the KPSS test. 

Pole coordinates time series (after removing components mentioned in 2.4.) passed the 

stationary test for d = 2 and for LOD time series (after removing components mentioned in 

2.2. and 2.4.) d = 1. 

The prediction process starts with the selection of the first day of forecast. Then, the 30 

observations preceding the first day of forecast were selected (rapid products from CODE, 

GFZ or IGS), while further back observations were taken from the final product (IERS). 

Afterward, the ERP predictions were carried out with ARIMA model and kriging for 15 and 

30 days ahead. Obtained results were compared with each ERP IERS final time series. The 

whole process is then repeated, shifting the first day of prediction to next day and repeated 

until the last day of the forecast is reached, i.e., 15 April 2022. The process is illustrated in 

Figure 4. The prediction process based on final product (IERS) did not use any rapid products 

(this is to compare results of prediction with and without rapid product supplementation), 

which means that the 30 observations preceding the first day of prediction were selected from 

the final product – IERS EOP 14 C04 12h.  

 

Figure 4. Diagram of the whole prediction process with rapid products 

For the IGS, GFZ, and IERS, the total number of 15-day predictions for each ERP and each 

method amounts to 1886 and the total number of 30-day predictions is equal to 1871. Due to 

gaps in the CODE time series, the number of each ERP forecasts is equal to 1822 and for 30-

day predictions amounts to 1807. 
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4. RESULTS 

The ERP prediction accuracy was assessed by means of the mean absolute prediction error 

(MAPE) given by 

𝑀𝐴𝑃𝐸𝑗 =
1

𝑛
∑|𝑒𝑖,𝑗|

𝑛

𝑖=1

 𝑗 ≔ prediction day number (9) 

where n is a number of predictions,  ei,j = Oi,j – Pi,j is the prediction error, O stands for observed 

and P for predicted ERP.  

Figure 5 and 6 present the values of MAPEs for ultra-short (15-day into the future) PMx and 

PMy prediction using ARIMA and kriging for data time series from four analysis centres. 

 

Figure 5. Comparison of MAPEs for 15-day PMx prediction for ARIMA and kriging for various 

analysis centres (CODE, GFZ and IGS denote rapid time series and IERS final time series) 

PMx prediction with ARIMA model offers better accuracy up to day 13; after this day the 

advantage is on the side of kriging. For the first 5 days, the advantage is around 0.3 mas in 

favour of the ARIMA model. As the forecast day increases, the difference between ARIMA 

model and kriging decreases. For the 15th day, the difference is around 0.15 mas in favour of 

kriging. MAPEs for PMx for each analysis centres are very similar. The average difference 

between MAPEs for PMx prediction with ARIMA model is around 0.01 mas. In case of 

kriging, prediction performance is similar, but only for first 10 days. Then, MAPEs for CODE 

time series increase and differ from the other centres by about 0.04 mas. 
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Figure 6. Comparison of MAPEs for 15-day PMy prediction for ARIMA and kriging for various 

analysis centres 

PMy prediction with ARIMA model offers better accuracy up to the last day. The differences 

between ARIMA and kriging are around 0.23 mas in favour of ARIMA. Similarly to PMx 

results, the average difference between MAPEs for PMy prediction with ARIMA for four 

centres is around 0.01 mas with maximum value 0.03 mas. MAPEs for various centres for 

kriging prediction up to 8th day of prediction are nearly the same (with difference around 0.01 

mas). On the 9th day of prediction differences between various centres increase to 0.02 mas 

and then on the last day, they reach values around 0.04 mas. 

For both PMx and PMy, prediction accuracy based on final data (IERS) does not differ 

significantly from accuracy obtained with rapid products (CODE, GFZ and IGS) 

supplementing. This insignificant difference between the forecasts based on either final or 

rapid data applies also to 30-day predictions of PMx/PMy and to both LOD forecast horizons. 
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Figure 7. Comparison of MAPEs for 15-day LOD prediction for ARIMA and kriging for various 

analysis centres 

Figure 7 presents the values of MAPEs for ultra-short (15-day into the future) LOD prediction 

using ARIMA and kriging for time series from four analysis centres. For the first 7 days, 

lower values of MAPEs are obtained, with advantage around 0.004 ms, for ARIMA. After 

this day, the advantage is on the side of kriging with maximum difference equal to about 

0.016 ms. The accuracy of predictions within kriging and ARIMA for each time series is 

nearly identical. 

Figures 8 and 9 present the values of MAPEs for short (30-day into the future) PMx and PMy 

prediction using ARIMA and kriging. 

  

Figure 8. Comparison of MAPEs for 30-day PMx prediction for ARIMA and kriging for various 

analysis centres 
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Up to 11 day of PMx prediction, MAPEs for ARIMA are smaller than those for kriging with 

maximum advantage around 0.5 mas. After this day, kriging reaches better accuracy of 

forecast. The maximum differences between ARIMA and kriging are on the 30th day and are 

equal to around 1.91 mas. The accuracy of predictions based on various data centres is nearly 

identical; the maximum differences vary from around 0.01 mas to 0.05 mas. 

 

Figure 9. Comparison of MAPEs for 30-day PMy prediction for ARIMA and kriging for various 

analysis centres 

For the first 18 days of PMy prediction, results indicate a better prediction performance of 

ARIMA model. From the 19th day, the advantage is in favour of kriging and reaches 

maximum value about 0.3 mas. The differences between predictions based on various data 

centres are small, around 0.01 – 0.03 mas.  
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Figure 10. Comparison of MAPEs for 30-day LOD prediction for ARIMA and kriging for various 

analysis centres 

Figure 10 shows a comparison of MAPEs for 30-day LOD prediction for ARIMA and kriging. 

Results indicate that for the first 6 days, prediction with ARIMA is more accurate. From the 

7th day onward, kriging gives a more accurate forecast. The maximum difference between the 

forecasting methods is about 0.026 ms for CODE (on the last day of prediction). It is worth 

noting that MAPEs for IGS and IERS using kriging are most similar to each other. In 

majority, this also holds for ARIMA. 

5. CONCLUSIONS 

Earth Rotation Parameters predictions based on ordinary kriging and ARIMA model have 

been presented in this contribution. Predictions have been performed on the basis of rapid 

(CODE, IGS and GFZ) and final (IERS) ERP products. The quality of polar motion forecast 

is visibly coordinate-dependent, i.e., PMx is worse predictable than PMy. The results indicate 

that the ARIMA-based prediction is better for ultra-short prediction; for PMx it turned out to 

be 11 -days of forecast, for PMy 18 -days, and for LOD 8 -days. The maximum differences 

for first few days of 15-day predictions between methods are around 0.32 mas (PMx), 0.23 

mas (PMy) and 0.004 ms (LOD) in favour of ARIMA. On the last day, the differences reach 

0.15 mas (PMx) and 0.016 ms (LOD) with advantage to kriging. For the first few days of 30-

day prediction, ARIMA gives lower MAPEs of approximately 0.5 mas (PMx), 0.3 mas (PMy) 

and 0.007 ms (LOD). The maximum differences of MAPEs on the last days of 30-day 

predictions are 1.91 mas (PMx), 0.3 mas (PMy) and 0.026 ms (LOD) with advantage to 

kriging method. For all ERP, the differences of MAPEs for time series from various analysis 

centres are not significant and vary up to maximum value of around 0.05 mas (PMx), 0.04 

mas (PMy) and 0.005 ms (LOD). These values are on the level of accuracy of corresponding 

ERP determination, i.e., polar coordinates with the accuracy of app. 50 μas or better and 10 μs 

in case of LOD (Dick and Thaller, 2020). It is also worth noting that the accuracy of 

prediction on the basis of rapid products (30-day gap filling) is on the same level as on final 

product only. The conducted comparisons did not give a clear answer as to which method, i.e., 

ARIMA or kriging, is better for a given ERP and for a given forecast length, with the 

exception of ultra-short-term (15 days) prediction for PMy where ARIMA systematically 
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behaved better. The results of this contribution are supported by a considerable number of 

performed predictions; therefore, all intermediate results are available at the website 

mentioned in the acknowledgements section. 
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