PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical model of levitating cart of magnetic UAV catapult

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the steps of modeling of the dynamics of a levitating cart of an unmanned aerial vehicle (UAV) magnetic catapult. The presented in the article innovative catapult is based on the Meissner effect occurring between high-temperature superconductors (HTS) and a magnetic field source. The catapult suspension system consists of two elements: fixed to the ground base with magnetic rails and a moving cart. Generating magnetic field rails are made of neodymium magnets. Levitation of the launcher cart is caused by sixteen superconductors YBCO, placed in the cart frame supports. Described in the article model contains the system of Cartesian reference frames, kinematic constrains, equations of motion and description of forces acting on the cart as well as exemplary numerical simulation results.
Rocznik
Strony
793--802
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Mechatronics, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Mechatronics, Warsaw, Poland
Bibliografia
  • 1. Baranowski L., 2016, Explicit “ballistic M-model”: a refinement of the implicit “modified point mass trajectory model”, Bulletin of the Polish Academy of Sciences Technical Sciences, 64, 1
  • 2. Bertoncelli T., Monti A., Patterson D., Dougal R., 2002, Design and simulation of an electromagnetic aircraft launch system, Power Electronics Specialists Conference, 2002. pesc 02. 2002 IEEE 33rd Annual, 3, 1475-1480
  • 3. Coates K.C., 2007, TGV’s 357Mph Demo Proves HSM’s Superiority, North American Maglev Transport Institute
  • 4. Fahlstrom P., Gleason T., 2012, Introduction to UAV Systems, Wiley, Aerospace Series, ISBN 978-11-1839-681-0
  • 5. Falkowski K., 2016, Passive Magnetic Suspension (in Polish), Military University of Technology, ISBN 978-83-7938-115-9
  • 6. Falkowski K., Huścio T., 2009, Modelling of the magnetic attraction force of the electromagnetic module in the relative base – air-gap – absolute base system, Solid State Phenomena, 144, 53-58
  • 7. Falkowski K., Sibilski K., 2013, Magnetic levitation system for take-off and landing airplane – project GABRIEL, COMSOL Conference 2013, Rotterdam
  • 8. Koruba Z., Dziopa Z., Krzysztofik I., 2010, Dynamics and control of a gyroscope-stabilized platform in a self-propelled anti-aircraft system, Journal of Theoretical and Applied Mechanics, 48, 1, 5-26
  • 9. Lichota P., Sibilski K., Ohme P., 2016, D-optimal simultaneous multistep excitations for aircraft parameter estimation, Journal of Aircraft, http://dx.doi.org/10.2514/1.C033794
  • 10. Liu Z., Long Z., Li X., 2015, MagLev Trains: Key Underlying Technologies, Springer Tracts in Mechanical Engineering, ISBN 978-3-662-45673-6
  • 11. Ładyżyńska-Kozdraś E., 2011, The modelling and numerical simulation of the controlled, movable objects with imposed non-holonomic constraints treated as control laws (in Polish), Mechanika, 237, Oficyna Wydawnicza Politechniki Warszawskiej
  • 12. Ładyżyńska-Kozdraś E., 2012, Modeling and numerical simulation of unmanned aircraft vehicle restricted by non-holonomic constraints, Journal of Theoretical and Applied Mechanics, 50, 1, 251-268
  • 13. Ładyżyńska-Kozdraś E., Koruba Z., 2012, Model of the final section of navigation of a self-guided missile steered by a gyroscope, Journal of Theoretical and Applied Mechanics, 50, 2, 473-485
  • 14. Polzin K.A., Adwar J.E., Hallock A.K., 2013, Optimization of electrodynamic energy transfer in coilguns with multiple, uncoupled stages, IEEE Transactions on Magnetics, 49, 4, 1453-1460
  • 15. Rohacs D., Rohacs J., 2015, Magnetic levitation assisted aircraft take-off and landing (feasibility study – GABRIEL concept), Progress in Aerospace Sciences, ISSN 0376-0421
  • 16. Schultz L., de Haas O., Verges P., Beyer C., Rohlig S., Olsen H., Kuhn L., Berger D., Noteboom U., Funk U., 2005, Superconductively levitated transport system – the SupraTrans project, IEEE Transactions on Applied Superconductivity, 15, 2, 2301-2305
  • 17. Sotelo G.G., Dias D.H.N., de Andrade R., Stephan R.M., 2011, Tests on a superconductor linear magnetic bearing of a full-scale MagLev vehicle, IEEE Transactions on Applied Superconductivity, 21, 1464-1468
  • 18. Wang J., Wang S., Deng C., Zeng Y., Song H., Huang H., 2005, A superhigh speed has MagLev vehicle, International Journal of Modern Physics B, 19, 01n03, 399-401
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6e021050-fc32-41d4-9faa-c91cb85befbf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.