PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Safety of Ammonium Dinitramide Synthesis vs. Size of a Commercial Production Scale

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ammonium dinitramide (ADN) is an ecological oxidizer suggested as a substitute for ammonium chlorate(VII) in solid rocket fuels. Three ADN synthetic methods were studied in order to estimate process safety under increased production scale, viz.: from ammonia (Method I), from urea (Method II), or from potassium sulfamate (Method III). The intermediates formed in these processes were identified and their thermal stability was examined. DSC analysis showed that the intermediates in Method II are unstable, they readily decompose and pose an explosion hazard. The intermediate in Method III is more thermally stable and less hazardous than its counterparts in Method II. The most suitable methods for large-scale processes are Methods I and III. The preferred method for commercial ADN production, in terms of safety, is Method III.
Rocznik
Strony
817--830
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Chemistry, Division of High Energetic Materials, Noakowskiego 3, 00-664 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemistry, Division of High Energetic Materials, Noakowskiego 3, 00-664 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Chemistry, Division of High Energetic Materials, Noakowskiego 3, 00-664 Warsaw, Poland
Bibliografia
  • [1] Babuk V.A., Vasilyew V.A., Molostow D.B., Solid Rocket Propellants on the Basis of Ammonium Dinitramide. Problems and Perspective Applications, 33rd Int. Annu.Conf. ICT, Karlsruhe, 2002, 21-1.
  • [2] Karlsson S., Ostmark H., Sensitivity and Performance Characterization of Ammonium Dinitramide (ADN), 11th Symp. Int. on Detonation, Snowmass, 1998, 801-806.
  • [3] Książczak A., Maksimowski P., Gołofit T., Ecological Rocket Propellants with Low Trail Level (in Polish), Problemy Techniki Uzbrojenia, 2005, 95(2), 133-141.
  • [4] Badgujar D.M., Talawar M.B., Asthana S.N., Mahulikar P.P., Advances in Science and Technology of Modern Energetic Materials: An Overview, J. Hazard. Mater., 2008, 151(2-3), 289-305.
  • [5] Schmitt R.J., Bottaro J.C., Penwell P.E., Bomberger C., Solid Fuel Oxidizer, US Patent 5 415 852, 1995.
  • [6] Bottaro J.C., Schmitt R.J., Penwell P.E., Ross D.S., Contacting Carbamate with Nitrating Agent and Neutralization, US Patent 5 198 204, 1993.
  • [7] Schmitt R.J., Bottaro F. C., Penwell P. E., Bomberger D. C., Process for Forming Ammonium Dinitramide Salt by Reaction between Ammonia and a Nitroniumcontaining Compound, US Patent 5316749, 1994.
  • [8] Malesa M., Skupiński W., Jamróz M., Separation of Ammonium Dinitramide from Reaction Mixture, Propellants Explos. Pyrotech., 1999, 24(2), 83-89.
  • [9] Langlet A., Ostmark H., Wingborg N., Method of Preparing Dinitramidic Acid and Salts Thereof, US Patent 5 976 483, 1999.
  • [10] Gołofit T., Maksimowski P., Biernacki A., Optimization of Potassium Dinitramide Preparation, Propellants Explos. Pyrotech., 2013, 38(2), 261-265.
  • [11] Hofelich T.C., Thomas R.C., The Use/Misuse of the 100 Degree Rule in the Interpretation of Thermal Hazard Tests, Int. Symposium Runaway Reactions, Amer. Inst. Chem. Eng., New York, 1989, 74.
  • [12] Yoshida T., Yoshizawa F., Itoh M., Matsunaga T., Watanabe M., Tamura M., Prediction of Fire and Explosion Hazards of Reactive Chemicals. I. Estimation of Explosive Properties of Self-reactive Chemicals from SC-DSC Data, (in Japanese), Kogyo Kayaku, 1987, 48(5), 311-316.
  • [13] Bodman G.T., Use of DSC in Screening of Explosive Properties, 30th North American Thermal Analysis Society (NATAS) Conference, Pittsburgh, PA, 2002, 605.
  • [14] Semenov N.N., Chemical Kinetics and Chain Reactions, Oxford University Press London, 1935, p. 489.
  • [15] Abramov V.G., Vaganova N.I., Effect of a Side Reaction with Small Heat Liberation on the Critical Thermal-explosion Condition of the Main Self-catalyzed Reaction (in Russian), Fiz. Goreniya Vzryva, 1978, 14(5), 135-41.
  • [16] Kozak G.D., Raikova V.M., Hazard of Runaway of Nitration Processes in Nitrocompounds Production, Cent. Eur. J. Energ. Mater., 2010, 7(1), 21-32.
  • [17] Grewer T., Thermal Hazards of Chemical Reactions, Elsevier, Amsterdam-Lausanne-New York- Oxford-Shannon-Singapore-Tokyo, 2000, 265-298, ISBN 0-444-89722-4.
  • [18] Title of subordinate document, in: Common Liquids and Fluids − Acetone, Oil,Paraffin, Water and Many More − and their Specific Heats, 2014; http://www.engineeringtoolbox.com/ pecific-heat-fluids-d_151.html of subordinate document (accessed 16 September 2014).
  • [19] Widmann G., Scherrer O., A New Program for DSC Purity Analysis, J. Therm. Anal. Calorim., 1991, 37(8), 1957-1964.
  • [20] Gołofit T., Książczak A., Application of DSC and DTA, Methods for Estimation of Safety Parameters of High Energetic Materials Such as Dinitramide Ammonium Salt (in Polish), Problemy Mechatroniki. Uzbrojenie, Lotnictwo, Inżynieria Bezpieczeństwa, 2011, 3(5), 31-42.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6df8de7d-3a71-4c09-a012-775d500724ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.